Volume 37 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
ZHANG Yanan, WU Xiaocheng, HU Xiong. TIEGCM Ensemble Kalman Filter Assimilation Model Design and Preliminary Results[J]. Journal of Space Science, 2017, 37(2): 168-176. doi: 10.11728/cjss2017.02.168
Citation: ZHANG Yanan, WU Xiaocheng, HU Xiong. TIEGCM Ensemble Kalman Filter Assimilation Model Design and Preliminary Results[J]. Journal of Space Science, 2017, 37(2): 168-176. doi: 10.11728/cjss2017.02.168

TIEGCM Ensemble Kalman Filter Assimilation Model Design and Preliminary Results

doi: 10.11728/cjss2017.02.168
  • Received Date: 2016-01-25
  • Rev Recd Date: 2016-03-11
  • Publish Date: 2017-03-15
  • By using the parameterized ionosphere model TIEGCM as the background model, and based on the COSMIC observations, the global ionospheric electron density assimilation model is established using ensemble Kalman filter. Result shows that this model can effectively assimilate the observations into background model and acquire three-dimensional ionospheric electron density. By comparison to the background, the error between analysis and observations decreases significantly. The Root Mean Square Error (RMSE) of NmF2 decreases by about 60% for observations with assimilation, and 20% for observations without assimilation. The RMSE of hmF2 does not get improvement except for mean error. The results of Simultaneous Assimilation (SA) and Batches Assimilation (BA) are compared for this case. The time that the two methods spend in assimilation is about 6 to 7 minutes, which does not differ very much. SA needs nearly 8GB storage while BA needs less than 2GB. The statistic of electron density error shows that they nearly acquire the same mean error, but the SA gets relative better improvement in RMSE above 250km height.

     

  • loading
  • [1]
    SCHERLIESS L, THOMPSON D C, SCHUNK R W. Ionospheric dynamics and drivers obtained from a physics-based data assimilation model[J]. Radio Sci., 2009, 44(1):RS0A32
    [2]
    YUE Xinan. Modeling and Data assimilation of Mid- and Low-latitude Ionosphere[D]. Wuhan:Wuhan Institute of Physics and Mathematics, Graduate University of Chinese Academy of Sciences, 2008(乐新安. 中低纬电离层模拟与数据同化研究[D]. 武汉:中国科学院研究生院(武汉物理与数学研究所), 2008)
    [3]
    SCHUNK R W, SCHERLIESS L, SOJKA J J, et al. Glo-bal assimilation of ionospheric measurements (GAIM)[J]. Radio Sci., 2004, 39(1):RS0S02
    [4]
    SCHERLIESS L, SCHUNK R W, SOJKA J J, et al. Development of a physics-based reduced state Kalman filter for the ionosphere[J]. Radio Sci., 2004, 39(1):RS1S04
    [5]
    SCHERLIESS L, SCHUNK R W, SOJKA J J, et al. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere:model description and validation[J]. J. Geophys. Res. Space Phys., 2006, 111(A11):A11315
    [6]
    MATSUO T, LEE I T, ANDERSON J L. Thermospheric mass density specification using an ensemble Kalman filter[J]. J. Geophys. Res. Space Phys., 2013, 118(3):1339-1350
    [7]
    LEE I T, MATSUO T, RICHMOND A D, et al. Assi-milation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering[J]. J. Geophys. Res. Space Phys., 2012, 117(A10):A10318
    [8]
    EVENSEN G. The ensemble Kalman filter for combined state and parameter estimation[J]. IEEE Control. Syst., 2009, 29(3):83-104
    [9]
    YUE Xinan, SCHREINER W S, LEI J, et al. Error ana-lysis of Abel retrieved electron density profiles from radio occultation measurements[J]. Ann. Geophys., 2010, 28(1):217-222
    [10]
    BUST G S, GARNER T W, GAUSSIRAN II T L. Ionospheric Data Assimilation Three-Dimensional (IDA3D):a global, multisensor, electron density specification algorithm[J]. J. Geophys. Res. Space Phys., 2004, 109(A11):A11312
    [11]
    YUE Xinan, WAN Weixing, LIU Libo, et al. Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter[J]. Radio Sci., 2007, 42(6):RS6006
    [12]
    YUE Xinan, WAN Weixing, LIU Libo, et al. Development of an ionospheric numerical assimilation nowcast and forecast system based on Gauss-Markov Kalman filter-an observation system simulation experiment taking example for China and its surrounding area[J]. Chin. J. Geophys., 2010, 53(4):787-795(乐新安, 万卫星, 刘立波, 等. 基于Gauss-Markov卡尔曼滤波的电离层数值同化现报预报系统的构建-以中国及周边地区为例的观测系统模拟试验[J]. 地球物理学报, 2010, 53(4):787-795)
    [13]
    HMAILL T M. Ensemble-Based Data Assimilation[R]//Advancing Understanding and Predictions of Climate Variability. Boulder, Colorado, USA:NOAA-CIRES Climate Diagnostics Center, 2002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1289) PDF Downloads(1226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return