Volume 37 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
GUO Wenjie, YAN Zhaoai, HU Xiong, GUO Shangyong, CHENG Yongqiang, HAO Wenze. Seasonal Variation of Atmospheric Temperature and Gravity Wave Activity over Beijing Area[J]. Journal of Space Science, 2017, 37(2): 177-184. doi: 10.11728/cjss2017.02.177
Citation: GUO Wenjie, YAN Zhaoai, HU Xiong, GUO Shangyong, CHENG Yongqiang, HAO Wenze. Seasonal Variation of Atmospheric Temperature and Gravity Wave Activity over Beijing Area[J]. Journal of Space Science, 2017, 37(2): 177-184. doi: 10.11728/cjss2017.02.177

Seasonal Variation of Atmospheric Temperature and Gravity Wave Activity over Beijing Area

doi: 10.11728/cjss2017.02.177
  • Received Date: 2016-02-17
  • Rev Recd Date: 2016-12-12
  • Publish Date: 2017-03-15
  • By using Rayleigh lidar data, the seasonal variations of atmospheric temperature and gravity wave activity at 30~70km height over Beijing area are analyzed. Results show that the atmospheric temperature has an obvious annual cycle variation. The highest temperature in the stratopause appears in June or July, which is about 270K. The lowest temperature at 70km height of the middle layer also occurs in June or July, which is about 200K. Taking the data of 14 October 2014 as an example to analyze the potential energy density of gravity wave, we find that dissipation exists in the potential energy of gravity waves under 50km height, while gravity waves propagate up with no dissipation over 50km height. Using the average potential energy density at 35~50km height, the seasonal variation of the gravity waves activities intensity is analyzed. The gravity waves activities have an obvious annual cycle. The average potential energy density is 18J·kg-1 and 8J·kg-1 in winter and summer respectively. The gravity waves activities intensity in winter are about two times of that in summer. In addition, the variation of gravity waves potential energy density with height in spring, summer, autumn and winter are analyzed. The analysis shows that the potential energy density of gravity waves is changing with different seasons and heights.

     

  • loading
  • [1]
    WANG Xiaobin, SUN Shuji, CHEN Chun, et al. Lidar observations of middle atmospheric density and temperature over Qingdao[J]. Chin. J. Space Sci., 2011, 31(6):778-783(王晓宾, 孙树计, 陈春, 等. 青岛上空中层大气密度和温度的激光雷达探测[J]. 空间科学学报, 2011, 31(6):778-783)
    [2]
    CHANG Qihai, YANG Guotao, SONG Juan, et al. Lidar observations of the middle atmospheric temperature characteristics over Wuhan[J]. Chin. J. Atmos. Sci., 2005, 02:314-320(常岐海, 杨国韬, 宋娟, 等. 武汉中层大气温度特性的激光雷达观测研究[J]. 大气科学, 2005, 02:314-320)
    [3]
    WILSON R, CHANIN M L, HAUCHECORNE A. Gravity waves in the middle atmosphere observed by Rayleigh lidar:1 case studies[J]. J. Geophys. Res., 1991, 96(D3):5153-5167
    [4]
    MARSH A K P, MITCHELL N J, THOMAS L. Lidar studies of stratospheric gravity-wave spectra[J]. Planet. Space Sci., 1991, 39(11):1541-1548
    [5]
    WHITEWAY J A, CARSWELL A I. Lidar observations of gravity wave activity in the upper stratosphere over toronto[J]. J. Geophys. Res., 1995, 100(1001):14113-14124
    [6]
    HERTZOG A, SOUPRAYEN C, HAUCHECORNE A. Measurements of gravity wave activity in the lower stra-tosphere by Doppler lidar[J]. J. Geophys. Res., 2001, 106(D8):7879-7890
    [7]
    LI T, LEBLANC T, MCDERMID I S, et al. Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii[J]. J. Geophys. Res., 2010, 115(D13):411-454
    [8]
    SIVAKUMAR V, RAO P B, BENCHERIF H. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5°N, 79.2°E)[J]. Ann. Geophys., 2006, 24(3):823-834
    [9]
    GAO X, MERIWETHER J W, WICKWAR V B, et al. Rayleigh lidar measurements of the temporal frequency and vertical wavenumber spectra in the mesosphere over the rocky mountain region[J]. J. Geophys. Res., 1998, 103(D6):6405-6416
    [10]
    ALEXANDER S P, KLEKOCIUK A R, MURPHY D J. Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above davis, antarctica (69°S, 78°E)[J]. J. Geophys. Res., 2011, 116. DOI: 10.1029/2010JD015164
    [11]
    CHEN C. The Preliminary Studies on the Gravity waves of Mid-Atmosphere through Rayleigh Lidar Techniques[D]. Hefei:University of Science and Technology of China, 2010(陈操. 中层大气重力波的瑞利激光雷达初步研究[D]. 合肥:中国科学技术大学, 2010)
    [12]
    GUO W J, HU X, YAN Z A, et al. Terrain-generated gra-vity waves in the upper stratosphere detected by Rayleigh lidar[J]. Chin. J. Geophys., 2015, 58(10):3481-3486(郭文杰, 胡雄, 闫召爱, 等. 利用瑞利激光雷达观测北京地区上平流层地形重力波活动[J]. 地球物理学报, 2015, 58(10):3481-3486)
    [13]
    BLUM U, FRICKE K H, BAUMGARTEN G, et al. Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on both sides of the sca-ndinavian mountains:a case study on 19/20 January 2003[J]. Atmos. Chem. Phys. Discus., 2004, 4(1):969-989
    [14]
    ZENG Z, HU X, ZHANG X X, et al. Compa-rison of density and temperature profile observed by lidar and occultation technique[J]. Chin. J. Space Sci., 2001(2):165-171(曾桢, 胡雄,张训械, 等. 无线电掩星和激光雷达观测结果比较[J]. 空间科学学报, 2001(2):165-171)
    [15]
    WHITEWAY J A, CARSWELL A I. Lidar observations of gravity wave activity in the upper stratosphere over Toronto[J]. J. Geophys. Res., 1995, 100(D7):14113-14124
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1033) PDF Downloads(1113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return