Volume 37 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
SANG Longlong, WU Mingyu, LU Quanming. Electrostatic Structure of the Electron Phase-space Holes Generated by the Electron Two-stream Instability with a Finite Width[J]. Chinese Journal of Space Science, 2017, 37(5): 517-523. doi: 10.11728/cjss2017.05.517
Citation: SANG Longlong, WU Mingyu, LU Quanming. Electrostatic Structure of the Electron Phase-space Holes Generated by the Electron Two-stream Instability with a Finite Width[J]. Chinese Journal of Space Science, 2017, 37(5): 517-523. doi: 10.11728/cjss2017.05.517

Electrostatic Structure of the Electron Phase-space Holes Generated by the Electron Two-stream Instability with a Finite Width

doi: 10.11728/cjss2017.05.517 cstr: 32142.14.cjss2017.05.517
Funds:

Supported by the National Science Foundation of China(41474125, 41331067, 41421063), 973 Program (2013CBA01503), and Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-DQC010)

More Information
  • Author Bio:

    SANG Longlong,E-mail:sandar@mail.ustc.edu.cn

  • Received Date: 2016-10-16
  • Rev Recd Date: 2017-03-07
  • Publish Date: 2017-09-15
  • Space satellite observations in an electron phase-space hole (electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell (PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem, especially in a strongly magnetized plasma (Ωe > ωpe, where Ωe is defined as electron gyrofrequency and ωpe is defined as plasma frequency, respectively). In this paper, with two-dimensional (2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.

     

  • loading
  • [1]
    MATSUMOTO H, KOJIMA H, MIYATAKE T, et al. Electrostatic Solitary Waves (ESW) in the magnetotail:BEN wave forms observed by GEOTAIL[J]. Geophys. Res. Lett., 1994, 21 (25):2915-2918
    [2]
    BALE S D, KELLOGG P J, LARSEN D E, et al. Bipolar electrostatic structures in the shock transition region:evidence of electron phase space holes[J]. Geophys. Res. Lett., 1998, 25 (15):2929-2932
    [3]
    ERGUN R E, CARLSON C W, MCFADDEN J P, et al. FAST satellite observations of large-amplitude solitary structures[J]. Geophys. Res. Lett., 1998, 25 (12):2041-2044
    [4]
    MANGENEY A, SALEM C, LACOMBE C, et al. WIND observations of coherent electrostatic waves in the solar wind[J]. Ann. Geophys., 1999, 17 (3):307-320
    [5]
    PICKETT J S, CHEN L J, KAHLER S W, et al. Isolated electrostatic structures observed throughout the Cluster orbit:relationship to magnetic field strength[J]. Ann. Geophys., 2004, 22 (7):2515-2523
    [6]
    WANG Rongsheng, LU Quanming, KHOTYAINTSEV Y V, et al. Observation of double layer in the separatrix region during magnetic reconnection[J]. Geophys. Res. Lett., 2014, 41 (14):4851-4858
    [7]
    LI S Y, OMURA Y, LEMBÈGE B, et al. Geotail observation of counter directed ESWs associated with the separatrix of magnetic reconnection in the near-Earth magnetotail[J]. J. Geophys. Res., 2014, 119 (1):202-210
    [8]
    GRAHAM D B, KHOTYAINTSEV Y V, VAIVADS A, et al. Electrostatic solitary waves with distinct speeds associated with asymmetric reconnection[J]. Geophys. Res. Lett., 2015, 42 (2):215-224
    [9]
    ERGUN R E, CARLSON C W, MCFADDEN J P, et al. Debye-scale plasma structures associated with magnetic-field-aligned electric fields[J]. Phys. Rev. Lett., 1998, 81 (4):826-829
    [10]
    FRANZ J R, KINTNER P M, PICKET J S, et al. Polar observations of coherent electric field structures[J]. Geophys. Res. Lett., 1998, 25 (8):1277-1280
    [11]
    BERNSTEIN I B, GREENE J M, KRUSKAL M D. Exact nonlinear plasma oscillations[J]. Phys. Rev., 1957, 108 (3):546-550
    [12]
    CHEN L J, PICKETT J, KINTNER P, et al. On the width-amplitude inequality of electron phase space holes[J]. J. Geophys. Res., 2005, 110 (A9):A09211
    [13]
    NG C S, BHATTACHARJEE A, SKIFF F. Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes:new results on old problems[J]. Phys. Plasmas, 2006, 13 (5):055903
    [14]
    OMURA Y, KOJIMA H, MATSUMOTO H. Computer simulation of electrostatic solitary waves:a nonlinear model of broadband electrostatic noise[J]. Geophys. Res. Lett., 1994, 21 (25):2923-2926
    [15]
    GOLDMAN M V, OPPENHEIM M M, NEWMAN D L. Nonlinear two-stream instabilities as an explanation for auroral bipolar wave structures[J]. Geophys. Res. Lett., 1999, 26 (13):1821-1824
    [16]
    OPPENHEIM M, NEWMAN D L, GOLDMAN M V. Evolution of electron phase-space holes in a 2D magnetized plasma[J]. Phys. Rev. Lett., 1999, 83 (12):2344-2347
    [17]
    LU Quanming, WANG Shui, DOU Xiankang. Electrostatic waves in an electron-beam plasma system[J]. Phys. Plasmas, 2005, 12 (7):072903
    [18]
    LU Q M, WANG D Y, WANG S. Generation mechanism of electrostatic solitary structures in the Earth's auroral region[J]. J. Geophys. Res., 2005, 110 (A3):A03223
    [19]
    UMEDA T, OMURA Y, MIYAKE T, et al. Nonlinear evolution of the electron two-stream instability:two-dimensional particle simulations[J]. J. Geophys. Res., 2006, 111 (A10):A10206
    [20]
    WU Mingyu, LU Quanming, ZHU Jie, et al. The magnetic structures of electron phase-space holes formed in the electron two-stream instability[J]. Astrophys. Space Sci., 2012, 338 (1):81-85
    [21]
    WU Mingyu, LU Quanming, ZHU Jie, et al. Electromagnetic particle-in-cell simulations of electron holes formed during the electron two-stream instability[J]. Plasma Sci. Technol., 2013, 15 (1):17-24
    [22]
    JAO C S, HAU L N. Fluid aspects of electron streaming instability in electron-ion plasmas[J]. Phys. Plasmas, 2014, 21 (2):022103
    [23]
    DU Aimin, WU Mingyu, LU Quanming, et al. Transverse instability and magnetic structures associated with electron phase space holes[J]. Phys. Plasmas, 2011, 18 (3):032104
    [24]
    WU Mingyu, LU Quanming, DU Aimin, et al. The evolution of the magnetic structures in electron phase-space holes:two-dimensional particle-in-cell simulations[J]. J. Geophys. Res., 2011, 116 (A10):A10208
    [25]
    LU Q M, LEMBEGE B, TAO J B, et al. Perpendicular electric field in two-dimensional electron phase-holes:a parameter study[J]. J. Geophys. Res., 2008, 113 (A10):A11219
    [26]
    WU Mingyu, LU Quanming, HUANG Can, et al. Transverse instability and perpendicular electric field in two-dimensional electron phase-space holes[J]. J. Geophys. Res., 2010, 115 (A10):A10245
    [27]
    WU Mingyu, WU Hong, LU Quanming, et al. Effects of perpendicular thermal velocities on the transverse instability in electron phase space holes[J]. Chin. Phys. Lett., 2010, 27 (9):095201
    [28]
    MUSCHIETTI L, ROTH I, CARLSON C W, et al. Transverse instability of magnetized electron holes[J]. Phys. Rev. Lett., 2000, 85 (1):94-97
    [29]
    LU Quanming, CAI Dongsheng. Implementation of parallel plasma particle-in-cell codes on PC cluster[J]. Comput. Phys. Commun., 2001, 135 (1):93-104
    [30]
    FU X R, LU Q M, WANG S. The process of electron acceleration during collisionless magnetic reconnection[J]. Phys. Plasmas, 2006, 13 (1):012309
    [31]
    LU Quanming, HUANG Can, XIE Jinlin, et al. Features of separatrix regions in magnetic reconnection:comparison of 2-D particle-in-cell simulations and Cluster observations[J]. J. Geophys. Res., 2010, 115 (A11):A11208
    [32]
    HUANG Can, LU Quanming, WANG Peiran, et al. Characteristics of electron holes generated in the separatrix region during antiparallel magnetic reconnection[J]. J. Geophys. Res., 2014, 119 (8):6445-6454
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1133) PDF Downloads(1380) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return