Citation: | YUAN Tianjiao, CHEN Yanhong, LIU Siqing, GONG Jiancun. Prediction Model for Ionospheric Total Electron Content Based on Deep Learning Recurrent Neural Networkormalsize[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57. doi: 10.11728/cjss2018.01.048 |
[1] |
LI Zhigang, CHENG Zongyi, FENG Chugang, et al. A study of prediction models for ionosphere[J]. Chin. J. Geophys., 2007, 50(2):327-337 (李志刚, 程宗颐, 冯初刚, 等. 电离层预报模型研究[J]. 地球物理学报, 2007, 50(2):327-337)
|
[2] |
CHEN Yanhong, XUE Bingsen, LI Libin. Forecasting of ionospheric critical frequency using neural networks[J]. Chin. J. Space Sci., 2005, 25(2):99-103 (陈艳红, 薛炳森, 李利斌. 利用神经网络预报电离层f0F2*[J]. 空间科学学报, 2005, 25(2):99-103)
|
[3] |
GAO Qing, LIU Libo, ZHAO Biqiang, et al. A prediction method for midlatitude ionospheric storms at a single station based on modified Kp[J]. Progr. Geophys., 2009, 24(6):1943-1950 (高琴, 刘立波, 赵必强, 等. 基于修正Kp指数的中纬区单站电离层暴预报方法研究[J]. 地球物理学进展, 2009, 24(6):1943-1950)
|
[4] |
HUANG Z, YUAN H. Ionospheric single-station TEC short-term forecast using RBF neural network[J]. Radio Sci., 2014, 49(4):283-292
|
[5] |
BORRIES C, BERDERMANN J, JAKOWSKI N, et al. Ionospheric storms-a challenge for empirical forecast of the total electron content[J]. J. Geophys. Res., 2015, 120(4):3175-3186
|
[6] |
SARMA K K, MITRA A. A class of recurrent neural network (RNN) architectures with SOM for estimating MIMO channels[C]//Advances in Computing and Communications. Berlin: Springer, 2011:512-521
|
[7] |
NISHIOKA M, MARUYAMA T, TSUGAWA T, et al. Forecast model of ionospheric total electron content over Japan using a machine learning technique[C]//Japan Geoscience Union Meeting, 2016
|
[8] |
KOURIS S S, POLIMERIS K V, CANDER L R. Specifications of TEC variability[J]. Adv. Space Res., 2006, 37(5):983-1004
|
[9] |
KOURIS S. Thresholds of TEC variability describing the plasmaspheric disturbed state[J]. Acta Geophys., 2008, 56(2):408-416
|
[10] |
NAKAMURA M I, MARUYAMA T, SHIDAMA Y. Using a neural network to make operational forecasts of ionospheric variations and storms at Kokubunji, Japan[J]. Earth, Planets Space, 2007, 59(12):1231-1239
|
[1] | LUO Aobo, LONG Yanfei, CHEN Lihu, FANG Hanxian, YU Sunquan, Ni Jiushun. TEC Measurement Method Based on Space-based AIS Data[J]. Chinese Journal of Space Science, 2022, 42(3): 366-375. doi: 10.11728/cjss2022.03.210325037 |
[2] | TANG Siyu, HUANG Zhi. Prediction of Ionospheric Total Electron Content Based on Causal Convolutional and LSTM Network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365. doi: 10.11728/cjss2022.03.210401042 |
[3] | OU Ming, WU Jiayan, CHEN Longjiang, ZHEN Weimin. Global Ionospheric TEC and ROTI Variations during a Moderate Geomagnetic Storm[J]. Chinese Journal of Space Science, 2021, 41(6): 887-897. doi: 10.11728/cjss2021.06.887 |
[4] | Liu Wenxue, Yuan Hong, Wei Dongyan, Xu Ying. A new GNSS signal carrier tracking algorithm for ionospheric TEC monitoring[J]. Chinese Journal of Space Science, 2014, 34(1): 63-72. doi: 10.11728/cjss2014.01.063 |
[5] | Wang Xiaolan, Ma Guanyi. Derivation of TEC and GPS hardware delay based on dual-frequency GPS observations[J]. Chinese Journal of Space Science, 2014, 34(2): 168-179. doi: 10.11728/cjss2014.02.168 |
[6] | WENG Libin, FANG Hanxian, MIAO Ziqing, YANG Shenggao. Forecasting of Ionospheric TEC One Hour in Advance by Artificial Neural Network[J]. Chinese Journal of Space Science, 2012, 32(2): 204-208. doi: 10.11728/cjss2012.02.204 |
[7] | GAO Wei, MA Guanyi, CHEN Yanhong, SHEN Hua, LI Jinghua, HUANG Wengeng, LI Zheng. Derivation of GPS-TEC and Instrumental Biases in the Equatorial Anomaly Region[J]. Chinese Journal of Space Science, 2008, 28(6): 541-546. doi: 10.11728/cjss2008.06.541 |
[8] | XIONG Bo, WAN Weixing, LIU Libo, NING Baiqi, GUO Jianpeng. Seasonal Variation of the Ionospheric Total Electron Content, Maximum Electron Density and Slab Thickness Over Wuhan[J]. Chinese Journal of Space Science, 2007, 27(2): 125-131. doi: 10.11728/cjss2007.02.125 |
[9] | XU Lijuan, YUAN Hong, FAN Jianjun, LIAO Bingyu. Study on a Method of Calculating the Ionosphere TEC Using RDSS System Observation Data[J]. Chinese Journal of Space Science, 2007, 27(4): 286-291. doi: 10.11728/cjss2007.04.286 |
[10] | MAO Tian, WAN Weixing, SUN Lingfeng. Central and Northern China TEC Map Using the Kriging Method[J]. Chinese Journal of Space Science, 2007, 27(4): 279-285. doi: 10.11728/cjss2007.04.279 |
[11] | LI Qiang, ZHANG Donghe, QIN Jiansheng, XIE Shibiao, ZHAO Yingxin, YE Jinfeng, MO Xiaohua, XIAO Zuo. Analysis of Global Ionospheric TEC Disturbance During the Magnetic Storm in Nov. 2004[J]. Chinese Journal of Space Science, 2006, 26(6): 440-444. doi: 10.11728/cjss2006.06.440 |
[12] | XIA Chunliang, WAN Weixing, YUAN Hong, ZHAO Biqiang, DING Feng. Analysis of the Intense Magneticstorm of July, 2000 and of October, 2003 Using the Technique for Nowcasting of GPS TEC Data[J]. Chinese Journal of Space Science, 2005, 25(4): 259-266. doi: 10.11728/cjss2005.04.20050404 |
[13] | XIA Chunliang, WAN Weixing, YUAN Hong, YU Tao. AN ANALYSIS OF THE IONOSPHERIC DISTURBANCES DURING A MAGNETIC STORM OBSERVED WITH A GPS NETWORK[J]. Chinese Journal of Space Science, 2004, 24(5): 326-332. doi: 10.11728/cjss2004.05.20040502 |
[14] | ZHANG Donghe, XIAO Zuo, GU Shifen, YE Zonghai. OBSERVATIONAL STUDY OF IONOSPHERIC TEC DURING THE MAGNETIC STORM ON APRIL 6—8, 2000[J]. Chinese Journal of Space Science, 2002, 22(3): 212-219. doi: 10.11728/cjss2002.03.20020303 |
[15] | XIAO Zuo, ZHANG Donghe. AN APPROACH TO STUDY THE DAY-TO-DAY VARIATIONS OF IONOSPHERIC TEC DIRECTLY BY GPS TIME-DELAY SIGNALS[J]. Chinese Journal of Space Science, 2000, 20(2): 97-102. doi: 10.11728/cjss2000.02.097 |
[16] | FAN Quanfu, TIAN Jianhua. PREDICTION OF GEOMAGNETIC DISTURBANCES FOLLOWING SOLAR PROTON EVENTS (SPEs) WITH A NEURAL NETWORK[J]. Chinese Journal of Space Science, 1998, 18(4): 329-335. doi: 10.11728/cjss1998.04.329 |
[17] | Li Li-bin, Wu Zhen-hua, Wang Bing-kang. THE TEC VARIATIONS DURING SUDDEN MAGNETIC STORM IN WUHAN[J]. Chinese Journal of Space Science, 1996, 16(2): 133-139. doi: 10.11728/cjss1996.02.133 |
[18] | Jiang He-rong, Yang Zeng-yu, Yang Mei-Hua. CHAOTIC CHARACTERISTICS OF THE IONOSPHERIC PARAMETERS AND THE PREDICTABLE TIME SCALE[J]. Chinese Journal of Space Science, 1994, 14(3): 221-226. doi: 10.11728/cjss1994.03.221 |
[19] | Liang Zhong-huan, Song Jin-an, Fan Zhan-you. EXPLORATION OF THE TEC CALCULATION METHODS AND A PRIMARY ANALYSIS OF THE SPATIAL AND TEMPERAL FEATURES OF THE NORTHERN CREST OF THE TEC EQUATORIAL ANOMALY OBTAINED BY MEASURING[J]. Chinese Journal of Space Science, 1993, 13(1): 63-70. doi: 10.11728/cjss1993.01.063 |
[20] | Comparative analysis of four neural network methods for TEC modeling during ionospheric magnetic storms[J]. Chinese Journal of Space Science. doi: 10.11728/cjss2024-0087 |
1. | 马晖,廉雨倩,徐娜娜,姜浩楠,戴幻尧. 基于长短期记忆网络模型的短期电离层TEC预测. 光学与光电技术. 2025(01): 61-66 . ![]() | |
2. | 谭宗佩,白征东,张强,郭锦萍,段博文. 基于ConvLSTM的北京区域电离层延迟建模. 测绘工程. 2024(01): 25-31+46 . ![]() | |
3. | 刘海军,雷东兴,袁静,乐会军,单维锋,李良超,王浩然,李忠,袁国铭. 基于注意力机制LSTM的电离层TEC预测. 地球物理学报. 2024(02): 439-451 . ![]() | |
4. | 倪育德,闫苗玉,刘瑞华. 基于DOA-BP神经网络的电离层TEC短期预测. 航空学报. 2024(04): 192-205 . ![]() | |
5. | 韦律权,黎峻宇,刘立龙,黄良珂,杨芸珍,魏朋志. 组合式深度学习的电离层TEC短期预报模型. 测绘科学技术学报. 2024(04): 369-374 . ![]() | |
6. | 陈鑫鑫,李淑慧,陈栋,胡翔宇. 预测全球电离层的多通道ConvLSTM模型. 导航定位学报. 2024(05): 125-131 . ![]() | |
7. | 郑丹丹,陈亮,王俊江,柳文. 融合电离层参数相似特征的f_0F_2参数深度学习预测方法. 空间科学学报. 2024(05): 763-771 . ![]() | |
8. | 徐盛,牛月娟,李培豪. 扰动条件下极区电离层N_mF_2预测研究. 极地研究. 2024(04): 544-554 . ![]() | |
9. | 蒋磊,孙蕊,刘正午,徐成,梁的达,胡德振. 基于GA-BP的中欧GNSS电离层误差建模与精度分析. 北京航空航天大学学报. 2023(06): 1533-1542 . ![]() | |
10. | 宋秉红. BP神经网络模型的电离层预报精度评估. 全球定位系统. 2023(05): 79-82+102 . ![]() | |
11. | 苏江文. 基于深度学习的远程监督关系抽取方法研究. 电子设计工程. 2022(02): 106-109+114 . ![]() | |
12. | 邹洪,刘家豪,陈锋,农彩勤,王斌. 基于递归神经网络的原始训练数据防泄漏密码生成系统设计. 电子设计工程. 2022(05): 122-126 . ![]() | |
13. | 唐丝语,黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报. 空间科学学报. 2022(03): 357-365 . ![]() | |
14. | 熊波,李肖霖,王宇晴,张瀚铭,刘子君,丁锋,赵必强. 基于长短时记忆神经网络的中国地区电离层TEC预测. 地球物理学报. 2022(07): 2365-2377 . ![]() | |
15. | 尹萍,闫晓鹏,宁泽浩. 一种基于LSTM与IRI模型的电离层层析TEC组合预测方法. 电波科学学报. 2022(05): 852-861 . ![]() | |
16. | 车磊,欧明,陈奇东,蔡红涛,甄卫民,陈龙江,靳睿敏. 一种可选的电离层TEC区域重构方法. 电波科学学报. 2022(05): 875-882 . ![]() | |
17. | 殷梦婷,邹自明,钟佳. 一种电离层TEC格点预测模型. 空间科学学报. 2021(04): 568-579 . ![]() | |
18. | 汤俊,李垠健,钟正宇,高鑫. EOF-LSTM神经网络的电离层TEC预报模型. 大地测量与地球动力学. 2021(09): 911-915+944 . ![]() | |
19. | 龙征宇,孙琳. 基于深度学习的节约型园林电能耗预测模型. 信息技术. 2021(09): 101-105+110 . ![]() | |
20. | 马国辉,罗云琪. 基于深度学习GRU模型的电离层总电子含量预报. 测绘与空间地理信息. 2020(S1): 212-215 . ![]() | |
21. | 程艳艳. 基于多列深度卷积神经网络的车型识别算法研究. 长春师范大学学报. 2020(06): 49-53 . ![]() | |
22. | LIU Siqing,CHEN Yanhong,LUO Bingxian,CUI Yanmei,ZHONG Qiuzhen,WANG Jingjing,YUAN Tianjiao,HU Qinghua,HUANG Xin,CHEN Hong. Development of New Capabilities Using Machine Learning for Space Weather Prediction. 空间科学学报. 2020(05): 875-883 . ![]() | |
23. | 吉长东,王强,王贵朋,刘亚南. 深度学习LSTM模型的电离层总电子含量预报. 导航定位学报. 2019(03): 76-81 . ![]() |