Volume 38 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
ZHOU Zhaodi, ZHANG Hui, NI Binbin, ZHANG Xiaojia, ZHU Changbo, FU Song. Kinetic Magnetic Turbulence Associated with Flux Transfer Events Observed by THEMIS Satellite ormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 169-177. doi: 10.11728/cjss2018.02.169
Citation: ZHOU Zhaodi, ZHANG Hui, NI Binbin, ZHANG Xiaojia, ZHU Changbo, FU Song. Kinetic Magnetic Turbulence Associated with Flux Transfer Events Observed by THEMIS Satellite ormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 169-177. doi: 10.11728/cjss2018.02.169

Kinetic Magnetic Turbulence Associated with Flux Transfer Events Observed by THEMIS Satellite ormalsize

doi: 10.11728/cjss2018.02.169
  • Received Date: 2017-04-11
  • Rev Recd Date: 2017-10-24
  • Publish Date: 2018-03-15
  • Intense magnetic fluctuations are recorded in the magnetosphere near the magnetopause when Flux Transfer Events (FTE) are passed by the THEMIS satellites. The power spectra of these fluctuations obtained by Fast Fourier Transform (FFT) show that the Power Spectra Density (PSD) peaks around the disturbance frequency of FTE (about 0.1Hz), and decreases from the proton gyrofrequency (about 1Hz) to 64Hz following a power law of P0f-α. These fluctuations are interpreted as magnetic turbulences in the kinetic regime in the Low Latitude Boundary Layer (LLBL). The results show that both the PSD and the slopes of the power spectra α decrease when the observing satellite position is more and more away from the magnetopause or the FTE location in the LLBL. However, α and the PSD are independent from the azimuthal position of FTE or local time of the low latitude magnetopause. All these observations suggest that the moving FTEs are the source for these magnetic fluctuations. Large scale perturbations on the magnetopause, e.g. FTEs and the associated magnetic turbulences, provide a hint which may reveal the interaction between the magnetosheath and the magnetosphere in a kinetic scale. Whether the magnetic turbulences can provide enough viscosity for the forming of the flow vortices on the magnetospheric side of FTEs or not need to be further confirmed.


  • loading
  • [1]
    RUSSELL C T, ELPHIC R C. Initial ISEE magnetometer results:magnetopause observations[J]. Space Sci. Rev., 1978, 22(6):681-715
    PASCHMANN G, HAERENDEL G, PAPAMASTORAKIS I, et al. Plasma and magnetic field characteristics of magnetic flux transfer events[J]. J. Geophys. Res., 1982, 87(A4):2159-2168
    LEE L C, FU Z F. A theory of magnetic flux transfer at the Earth's magnetopause[J]. Geophys. Res. Lett., 1985, 12(2):105-108
    PU Z Y, HOU P T, LIU Z X. Vortex-induced tearing mode instability as a source of flux transfer events[J]. J. Geophys. Res., 1990, 95(A11):18861-18869
    SOUTHWOOD D J. Theoretical aspects of ionosphere-magnetosphere-solar wind coupling[J]. Adv.Space Res., 1985, 5(4):7-14
    BERCHEM J, RUSSELL C T. Flux transfer events on the magnetopause:spatial distribution and controlling factors[J]. J. Geophys. Res., 1984, 89(A8):6689-6703
    RIJNBEEK R P, COWLEY S W H, SOUTHWOOD D J, et al. A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers[J]. J. Geophys. Res., 1984, 89(A2):786-800
    ZHANG H, KHURANA K K, KIVELSON M G, et al. Modeling a force-free flux transfer event probed by multiple time history of events and macroscale interactions during substorms (THEMIS) spacecraft[J]. J. Geophys. Res., 2008, 113(A1):A00C05
    KOROTOVA G I, SIBECK D G, ROSENBERG T. Geotail observations of FTE velocities[J]. Ann. Geophys., 2009, 27(1):83-92
    FARRUGIA C J, ELPHIC R C, SOUTHWOOD D J, et al. Field and flow perturbations outside the reconnected field line region in flux transfer events:theory[J]. Planet. Space Sci., 1987, 35(2):227-240
    LIU J, ANGELOPOULOS V, SIBECK D, et al. THEMIS observations of the dayside traveling compression region and flows surrounding flux transfer events[J]. Geophys. Res. Lett., 2008, 35(17):L17S07
    ZHANG H, KIVELSON M G, ANGELOPOULOS V, et al. Flow vortices associated with flux transfer events moving along the magnetopause:observations and an MHD simulation[J]. J. Geophys. Res., 2011, 116(A8):A08202
    SONNERUP B U Ö, SIEBERT K D. Theory of the low latitude boundary layer and its coupling to the ionosphere:a tutorial review[M]//Earth's Low-Latitude Boundary Layer. Washington:American Geophysical Union, 2013
    CAI C L, CAO J B, ZHOU G C, et al. Whistler turbulence at the magnetopause:a nonlinear generation mechanism[J]. Phys. Plasmas, 2001, 8(1):272-276
    TU C Y, MARSCH E. MHD structures, waves and turbulence in the solar wind:observations and theories[J]. Space Sci. Rev., 1995, 73(1/2):1-210
    ZIMBARDO G, GRECO A, SORRISO-VALVO L, et al. Magnetic turbulence in the geospace environment[J]. Space Sci. Rev., 2010, 156(1-4):89-134
    CUMMINGS W D, COLEMAN JR P J. Magnetic fields in the magnetopause and vicinity at synchronous altitude[J]. J. Geophys. Res., 1968, 73(17):5699-5718
    NEUGEBAUER M, RUSSELL C T, SMITH E J. Observations of the internal structure of the magnetopause[J]. J. Geophys. Res., 1974, 79(4):499-510
    SCKOPKE N, PASCHMANN G, HAERENDEL G, et al. Structure of the low-latitude boundary layer[J]. J. Geophys. Res., 1981, 86(A4):2099-2110
    STASIEWICZ K, KHOTYAINTSEV Y, GRZESIAK M. Dispersive Alfvén waves observed by Cluster at the magnetopause[J]. Phys. Scr., 2004, T107:171
    STASIEWICZ K, SEYLER C E, MOZER F S, et al. Magnetic bubbles and kinetic Alfvén waves in the high-latitude magnetopause boundary[J]. J. Geophys. Res., 2001, 106(A12):29503-29514
    REZEAU L, PERRAUT S, ROUX A. Electromagnetic fluctuations in the vicinity of the magnetopause[J]. Geophys. Res. Lett., 1986, 13(11):1093-1096
    REZEAU L, MORANE A, PERRAUT S, et al. Characterization of Alfvenic fluctuations in the magnetopause boundary layer[J]. J. Geophys. Res., 1989, 94(A1):101-110
    LE G, ZHENG Y, RUSSELL C T, et al. Flux transfer events simultaneously observed by polar and cluster:flux rope in the subsolar region and flux tube addition to the polar cusp[J]. J. Geophys. Res., 2008, 113(A1):A01205
    GURNETT D A, ANDERSON R R, TSURUTANI B T, et al. Plasma wave turbulence at the magnetopause:observations from ISEE 1 and 2[J]. J. Geophys. Res., 1979, 84(A12):7043-7058
    TSURUTANI B T, SMITH E J, THORNE R M, et al. Wave-particle interactions at the magnetopause:contributions to the dayside aurora[J]. Geophys. Res. Lett., 1981, 8(2):183-186
    PASCHMANN G, PAPAMASTORAKIS J, SCKOPKE N, et al. Altitude and structure of an auroral arc acceleration region[J]. J. Geophys. Res. Space Phys., 1983, 88(A9):7121-7130
    CHASTON C C, WILBER M, MOZER F S, et al. Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth's magnetopause[J]. Phys. Rev. Lett., 2007, 99(17):175004
    JOHNSON J R, CHENG C Z. Kinetic Alfvén waves and plasma transport at the magnetopause[J]. Geophys. Res. Lett., 1997, 24(11):1423-1426
    JOHNSON J R, CHENG C Z. Stochastic ion heating at the magnetopause due to kinetic Alfvén waves[J]. Geophys. Res. Lett., 2001, 28(23):4421-4424
    LEE L C, JOHNSON J R, MA Z W. Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause[J]. J. Geophys. Res., 1994, 99(A9):17405-17411
    SIBECK D G, ANGELOPOULOS V. THEMIS science objectives and mission phases[J]. Space Sci. Rev., 2008, 141(1-4):35-59
    AUSTER H U, GLASSMEIER K H, MAGNES W, et al. The THEMIS fluxgate magnetometer[J]. Space Sci. Rev., 2008, 141(1-4):235-264
    ROUX A, LE CONTEL O, COILLOT C, et al. The search coil magnetometer for THEMIS[J]. Space Sci. Rev., 2008, 141(1-4):265-275
    MCFADDEN J P, CARLSON C W, LARSON D, et al. The THEMIS ESA plasma instrument and in-flight calibration[J]. Space Sci. Rev., 2008, 141(1-4):277-302
    SHUE J H, SONG P, RUSSELL C T, et al. Magnetopause location under extreme solar wind conditions[J]. J. Geophys. Res., 1998, 103(A8):17691-17700
    ZHANG H, KIVELSON M G, KHURANA K K, et al. Evidence that crater flux transfer events are initial stages of typical flux transfer events[J]. J. Geophys. Res., 2010, 115(A8):A08229
    ALEXANDROVA O. Solar wind vs. magnetosheath turbulence and Alfvén vortices[J]. Nonlin. Proc. Geophys., 2008, 15(1):95-108
    NYKYRI K, GRISON B, CARGILL P J, et al. Origin of the turbulent spectra in the high-altitude cusp:cluster spacecraft observations[J]. Ann. Geophys., 2006, 24(3):1057-1075
    DENSKAT K U, BEINROTH H J, NEUBAUER F M. Interplanetary magnetic field power spectra with frequencies from 2.4×10 to the -5thHz to 470Hz from HELIOS-observations during solar minimum conditions[J]. J. Geophys. Zeischrift Geophys., 1983, 54(1):60-67
    LEAMON R J, SMITH C W, NESS N F, et al. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range[J]. J. Geophys. Res., 1998, 103(A3):4775-4787
    RINAWA M L, SHARMA R P, MODI K V, et al. The nonlinear evolution of kinetic Alfvén wave with the ion acoustic wave and turbulent spectrum in the magnetopause region[J]. J. Geophys. Res., 2015, 120(2):1238-1247
    GRECO A, TAKTAKISHVILI A L, ZIMBARDO G, et al. Ion dynamics in the near-Earth magnetotail:magnetic turbulence versus normal component of the average magnetic field[J]. J. Geophys. Res., 2002, 107(A10):1267
    MENG C I, ANDERSON K A. Characteristics of the magnetopause energetic electron layer[J]. J. Geophys. Res., 1975, 80(31):4237-4243
    BAKER D N, STONE E C. The magnetopause energetic electron layer, 1. Observations along the distant magnetotail[J]. J. Geophys. Res., 1978, 83(A9):4327-4338
    FAGANELLO M, CALIFANO F, PEGORARO F. Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth's magnetosphere:formation of electromagnetic coherent structures[J]. Phys. Rev. Lett., 2008, 101(10):105001
    GRECO A, TAKTAKISHVILI A L, ZIMBARDO G, et al. Ion transport and Lévy random walk across the magnetopause in the presence of magnetic turbulence[J]. J. Geophys. Res., 2003, 108(A11):1395
    LABELLE J, TREUMANN R A. Plasma waves at the dayside magnetopause[J]. Space Sci. Rev., 1988, 47(1/2):175-202
    MATSUMOTO Y, HOSHINO M. Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer[J]. J. Geophys. Res., 2006, 111(A5):A05213
    TAKTAKISHVILI A, ZIMBARDO G, AMATA E, et al. Ion escape from the high latitude magnetopause:analysis of oxygen and proton dynamics in the presence of magnetic turbulence[J]. Ann. Geophys., 2007, 25(8):1877-1885
    GRIGORENKO E E, SAUVAUD J A, ZELENYI L M. Spatial-temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail[J]. J. Geophys. Res., 2007, 112(A5):A05218
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(929) PDF Downloads(4602) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint