Volume 38 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
WANG Yegui, JING Wenqi, CUI Yuanyuan, CAI Qifa, LAN Weiren, FANG Hanxian, WENG Libin, NIU Jun. Application of ERA5 Reanalysis to the Construction of Initial Conditions for WACCM Simulations[J]. Journal of Space Science, 2018, 38(4): 460-468. doi: 10.11728/cjss2018.04.460
Citation: WANG Yegui, JING Wenqi, CUI Yuanyuan, CAI Qifa, LAN Weiren, FANG Hanxian, WENG Libin, NIU Jun. Application of ERA5 Reanalysis to the Construction of Initial Conditions for WACCM Simulations[J]. Journal of Space Science, 2018, 38(4): 460-468. doi: 10.11728/cjss2018.04.460

Application of ERA5 Reanalysis to the Construction of Initial Conditions for WACCM Simulations

doi: 10.11728/cjss2018.04.460
Funds:

Supported by the National Natural Science Foundation of China (41375105)

More Information
  • Author Bio:

    WANG Yegui,E-mail:wenqijing@foxmail.com

  • Received Date: 2017-07-10
  • Rev Recd Date: 2017-12-28
  • Publish Date: 2018-07-15
  • This study uses ECMWF fifth-generation reanalysis, ERA5, which extends to the mesopause, to construct the Initial Conditions (IC) for WACCM (Whole Atmosphere Community Climate Model) simulations. Because the biases between ERA5 and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature data are within ±5 K below the lower mesosphere, ERA5 reanalysis is used to construct IC in the lower atmosphere. Four experiments are performed to simulate a Stratospheric Sudden Warming (SSW) event from 5 to 15 February 2016. The simulation using the WACCM default climatic IC cannot represent the sharp meteorological variation during SSW. In contrast, the 0~4 d forecast results driven by ERA5-constructed IC is consistent with ERA5 reanalysis below the middle mesosphere. Comparing with WACCM climatology ICs scheme, the ICs constructing method based on ERA5 reanalysis can obtain 67%, 40%, 22%, 4% and 6% reduction of temperature forecast RMSE at 10 hPa, 1 hPa, 0.1 hPa, 0.01 hPa and 0.001 hPa respectively. However, such improvement is not shown in the lower thermosphere.

     

  • loading
  • [1]
    GERBER E P, BALDWIN M P, AKIYOSHI H, et al. Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models[J]. J. Geophys. Res., 2010, 115(D3):D00M06
    [2]
    XIE F, LI J P, TIAN W S, et al. A connection from Arctic stratospheric ozone to El Niño-Southern Oscillation[J]. Environ. Res. Lett., 2016, 11(12):124026
    [3]
    XIE F, TIAN W S, CHIPPERFIELD M P. Radiative effect of ozone change on stratosphere-troposphere exchange[J]. J. Geophys. Res., 2008, 113(D7):D00B09, doi: 10.1029/2008JD009829
    [4]
    XIE F, LI J P, TIAN W S, et al. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere[J]. Atmos. Chem. Phys., 2012, 12(11):5259-5273
    [5]
    ZHANG J K, TIAN W S, CHIPPERFIELD M P, et al. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades[J]. Nat. Climate Change, 2016, 6(12):1094-1099
    [6]
    LIU H L, MCINERNEY J, SANTOS S, et al. Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model[J]. Geophys. Res. Lett., 2014, 41(24):9106-9112
    [7]
    MCCORMACK J P, ECKERMANN S D, COY L, et al.NOGAPS-ALPHA model simulations of stratospheric ozone during the solve2 campaign[J]. Atmos. Chem. Phys., 2004, 4(9-10):2401-2423
    [8]
    ECKERMANN S D, HOPPEL K W, COY L, et al. High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007[J]. J. Atmos. Solar Terr. Phys., 2009, 71(3-4):531-551
    [9]
    AKMAEV R A, FULLER-ROWELL T J, WU F, et al. Tidal variability in the lower thermosphere:comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED[J]. Geophys. Res. Lett., 2008, 35(3):L03810
    [10]
    GARCIA R R, MARSH D R, KINNISON D E, et al. Simulation of secular trends in the middle atmosphere, 1950-2003[J]. J. Geophys. Res. Atmos., 2007, 112(D9):D09301
    [11]
    MARSH D R, MILLS M J, KINNISON D E, et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM)[J]. J. Climate, 2013, 26(19):7372-7391
    [12]
    JACKMAN C H, MARSH D R, VITT F M, et al. Longterm middle atmospheric influence of very large solar proton events[J]. J. Geophys. Res., 2009, 114(D11):D11304
    [13]
    MATTHES K, MARSH D R, GARCIA R R, et al. Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings[J]. J. Geophys. Res., 2010, 115(D18):D18110
    [14]
    SASSI F, KINNISON D, BOVILLE B A, et al. Effect of El NiñoSouthern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere[J]. J. Geophys. Res., 2004, 109(D17):D17108
    [15]
    PEDATELLA N M, RAEDER K, ANDERSON J L, et al. Ensemble data assimilation in the Whole Atmosphere Community Climate Model[J]. J. Geophys. Res., 2014, 119(16):9793-9809
    [16]
    SASSI F, LIU H, MA J, et al. The lower thermosphere during the northern hemisphere winter of 2009:a modeling study using high-altitude data assimilation products in WACCM-X[J]. J. Geophys. Res., 2013, 118(16):8954-8968
    [17]
    HERSBACH H, DEE D. ERA5 Reanalysis is in Production[R]. ECMWF Newsletter, 2016, 147(7)
    [18]
    REMSBERG E, LINGENFELSER G, HARVEY V L, et al. On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses[J]. J. Geophys. Res., 2003, 108(D20):4628
    [19]
    REMSBERG E E, MARSHALL B T, GARCIA-COMAS M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER[J]. J. Geophys. Res., 2008, 113(D17):D17101
    [20]
    RICHTER J H, SASSI F, GARCIA R R. Toward a physically based gravity wave source parameterization in a General Circulation Model[J]. J. Atmos. Sci., 2010, 67(1):136-156
    [21]
    YANG Junfeng, XIAO Cunying, HU Xiong, et al. Observations and simulations of the mean winds in mesosphere and lower thermosphere over Langfang of China[J]. Chin. J. Space Sci., 2017, 37(3):284-290(杨钧烽, 肖存英, 胡雄,等. 中国廊坊中间层和低热层大气平均风观测模拟[J].空间科学学报, 2017, 37(3):284-290)
    [22]
    PAN Chen, ZHU Bin, SHI Chunhua, et al. SD-WACCM modeling study on the chemical components in the stratosphere[J]. J. Meteor. Sci., 2015, 35(1):9-16(潘晨, 朱彬, 施春华, 等.SD-WACCM模式对平流层化学组分的模拟研究[J]. 气象科学, 2015, 35(1):9-16)
    [23]
    LIU Yi, LIU Chuanxi. Simulation studies on seasonal variations of the stratospheric dynamics and trace gases using coupled chemistry-climate model WACCM-3[J]. Chin. J. Space Sci., 2009, 29(6):580-590(刘毅, 刘传熙.利用WACCM-3模式对平流层动力、热力场及微量化学成分季节变化的数值模拟研究[J].空间科学学报, 2009, 29(6):580-590)
    [24]
    SHANG Lin, LIU Yi, WANG Yong, et al. Seasonal distribution of ozone and radiation field at the stratosphere[J]. Chin. J. Space Sci., 2015, 35(1):40-49(商林, 刘毅, 王永,等. 平流层臭氧和辐射场的季节分布特征[J]. 空间科学学报, 2015, 35(1):40-49)
    [25]
    REN S Z, POLAVARAPU S, BEAGLEY S R, et al. The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming[J]. J. Geophys. Res., 2011, 116(D19):D19116
    [26]
    XU X, MANSON A H, MEEK C E, et al. Mesospheric wind semidiurnal tides within the Canadian middle atmosphere model data assimilation system[J]. J. Geophys. Res., 2011, 116(D17):D17102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(761) PDF Downloads(2350) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return