Volume 39 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
LIU Xing, YANG Guotao, WANG Jihong, DU Lifang, JIAO Jing, WANG Zelong, XUN Yuchang. Retrieval Algorithm of Middle Atmospheric Temperature Using Rayleigh Lidar[J]. Chinese Journal of Space Science, 2019, 39(2): 186-190. doi: 10.11728/cjss2019.02.186
Citation: LIU Xing, YANG Guotao, WANG Jihong, DU Lifang, JIAO Jing, WANG Zelong, XUN Yuchang. Retrieval Algorithm of Middle Atmospheric Temperature Using Rayleigh Lidar[J]. Chinese Journal of Space Science, 2019, 39(2): 186-190. doi: 10.11728/cjss2019.02.186

Retrieval Algorithm of Middle Atmospheric Temperature Using Rayleigh Lidar

doi: 10.11728/cjss2019.02.186 cstr: 32142.14.cjss2019.02.186
  • Received Date: 2018-03-19
  • Rev Recd Date: 2018-10-22
  • Publish Date: 2019-03-15
  • Rayleigh lidar is an important equipment to measure temperature of the mesosphere. It has the capacity for continuous detection with high spatial and temporal resolution. To take full advantage of the original data obtained by Rayleigh lidar, the conventional Chanin-Haunchecorne method is improved. The initial temperatures adopted by the improved algorithm are obtained by uniform search, and then the atmospheric temperature can be inversed. The Rayleigh lidar located in Yanqing, Beijing (40.3°N, 116.2°E) consists of a 589 nm channel and a 532 nm channel. The 589 nm channel is used for calculating atmospheric temperature, and the 532 nm channel is taken as the reference of the former. The initial temperatures are chosen at regular intervals from 150 to 250°K, and the temperature profiles and its corresponding density profiles from 60 km to 70 km altitude is retrieved with the 589 nm channel. The accurate temperature and the corresponding temperature profile can be obtained according to the reference density profile. This reversed temperature profile is compared with that of 532 nm channel. The results show that they have good agreement with each other. This improved algorithm takes full advantage of optical signals with poor signal-to-noise ratio, and improves the upper detection limit of atmospheric temperature with 589 nm channel from 60 km to 70 km. The method is reliable.

     

  • loading
  • [1]
    LÜ Daren, WANG Yingjian. Recent advances of middle atmosphere research in China[J]. Chin. J. Geophys., 1994, A01:74-84(吕达仁, 王英鉴. 中国中层大气研究的近期进展[J]. 地球物理学报, 1994, A01:74-84)
    [2]
    SHEPHERD T G. The middle atmosphere[J]. J. Atmos. Solar-Terr. Phys., 2000, 62(17):1587-1601
    [3]
    CHEN Hongbin. An overview of the space-based observation for upper atmospheric research[J]. Adv. Earth Sci., 2009, 24(3):229-241(陈洪滨. 中高层大气研究的空间探测[J]. 地球科学进展, 2009, 24(3):229-241)
    [4]
    JUAENI I, TABATA H, NOERSOMADI, et al. Retrieval of temperature profiles using Radio Acoustic Sounding System (RASS) with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia[J]. Earth Planets Space, 2018, 70:20
    [5]
    WANG Yongmei, FU Liping, WANG Yingjian. Review of space-based FUV aurora/airglow observations[J]. Progr. Geophys., 2008, 23(5):1474-1479(王咏梅, 付利平, 王英鉴. 星载远紫外极光/气辉探测发展综述[J]. 地球物理学进展, 2008, 23(5):1474-1479)
    [6]
    LEBLANC T, HAUCHECORNE A. Recent observations of mesospheric temperature inversions[J]. J. Geophys. Res., 1997, 102(D16):19471-19482
    [7]
    ARGALL P S, SICA R J. A comparison of rayleigh and sodium lidar temperature climatologies[J]. Ann. Geophys., 2007, 25(1):27-35
    [8]
    HAUCHECORNE A, CHANIN M L, KECKHUT P. Climatology and trends of the middle atmospheric-temperature (33~87km) as seen by rayleigh lidar over the south of France[J]. J. Geophys. Res., 1991, 96(D8):15297-15309
    [9]
    HAUCHECORNE A, CHANIN M L. Density and temperature profiles obtained by lidar between 35-km and 70-km[J]. Geophys. Res. Lett., 1980, 7(8):565-568
    [10]
    KHANNA J, BANDORO J, SICA R J, et al. New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion[J]. Appl. Opt., 2012, 51(33):7945-7952
    [11]
    YUE C, YANG G T, WANG J H, et al. Lidar observations of the middle atmospheric thermal structure over north China and comparisons with TIMED/SABER[J]. J. Atmos. Solar-Terr. Phys., 2014, 120:80-87
    [12]
    WANG C. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8(8):1-5
    [13]
    GUAN Sai. Study on High Power-Aperture Lidar Remote Sensing if Mid-Upper Atmosphere:Device Standardization, Data Calibration and Seasonal Characteristics of Atmospheric Temperature[D]. Beijing:University of Chinese Academy of Sciences, 2014(关塞. 大功率孔径积激光雷达中高层大气探测:设备标定、反演修正及大气温度季节特性研究[D]. 北京:中国科学院大学, 2014)
    [14]
    GAO F, NAN H S, HUANG B, et al. Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols[J]. Acta Phys. Sin., 2018, 67(3):10
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2119) PDF Downloads(402) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return