Volume 39 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
XIE Junyan, ZHANG Yue, ZHENG Huiqiong. Cortical Microtubule Reorientation and Its Relation to Cell Surface Texture of Epidermal Cells of Arabidopsis Thaliana Hypocotyls under Simulated Microgravity Conditions[J]. Journal of Space Science, 2019, 39(4): 478-488. doi: 10.11728/cjss2019.04.478
Citation: XIE Junyan, ZHANG Yue, ZHENG Huiqiong. Cortical Microtubule Reorientation and Its Relation to Cell Surface Texture of Epidermal Cells of Arabidopsis Thaliana Hypocotyls under Simulated Microgravity Conditions[J]. Journal of Space Science, 2019, 39(4): 478-488. doi: 10.11728/cjss2019.04.478

Cortical Microtubule Reorientation and Its Relation to Cell Surface Texture of Epidermal Cells of Arabidopsis Thaliana Hypocotyls under Simulated Microgravity Conditions

doi: 10.11728/cjss2019.04.478
Funds:

Supported by the China Manned Space Flight Technology Project TG-2 and the National Natural Science Foundation of China (31670864), the National Natural Fund Joint Fund Project(U1738106), the Strategic Pioneer Projects of CAS (XDA15013900), and the National Science Foundation for Young Scientists of China (31500687)

More Information
  • Author Bio:

    ZHENG Huiqiong,hqzheng@sippe.ac.cn

  • Received Date: 2019-04-29
  • Publish Date: 2019-07-15
  • Gravitropic curvature growth of Arabidopsis hypocotyls mainly occurred in the rapid growing Elongation Zone (EZI), not in the slow-growing Elongation Zone (EZⅡ). By examining reorientation of Microtubules (MT) and phenotype of the cell wall in the EZI and the EZⅡ of Arabidopsis hypocotyls under normal gravitational condition, it is found that MTs in the rapid growing epidermal cells were mainly in the transverse direction, while those in the non-growing epidermal cells were in the longitudinal directions. However, this difference in cortical MT arrays between the EZI and EZⅡ cells disappeared when the seedlings were exposed to the simulated microgravity condition on a horizontal clinostat. Field emission scanning electron microscopy revealed that the surface texture of epidermal cells, like the direction of the MT, in the EZI and the EZⅡ also became similar when exposed to the simulated microgravity condition. This result indicated that simulate microgravity could modify the potential differentiation between the EZI and the EZⅡ by affecting the orientation of cortical MT in the epidermal cells.

     

  • loading
  • [1]
    NICK P, BERGFELD R, SCHAFER E, et al. Unilateral reorientation of microtubules at the outer epidermal wall during phototropic and gravitropic curvature of maize coleoptiles and sunflower hypocotyls[J]. Planta, 1990, 181(2):162-168
    [2]
    HIMMELSPACH R, WYMER C L, LLOYD C W, et al. Gravity-induced reorientation of cortical microtubules observed in vivo[J]. Plant J., 1999, 18(4):449-453
    [3]
    SHEVCHENKO G, KALININA Y, KORDYUM E. Role of cytoskeleton in gravisensing of the root elongation zone in Arabidopsis thaliana plants[J]. Cell Bio. Int., 2008, 32(5):560-562
    [4]
    ARANITI F, GRANA E, KRASUSKA U, et al. Loss of gravitropism in farnesene-treated arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance[J]. Plos. One, 2016, 11(8):1-26
    [5]
    BASKIN T I. On the alignment of cellulose microfibrils by cortical microtubules:a review and a model[J]. Protoplasma, 2001, 215(1-4):150-171
    [6]
    MATHUR J, HULSKAMP M. Microtubules and microfilaments in cell morphogenesis in higher plants[J]. Curr. Bio., 2002, 12(19):R669-R676
    [7]
    CHAN J, EDER M, CROWELL E F, et al. Microtubules and CESA tracks at the inner epidermal wall align independently of those on the outer wall of light-grown Arabidopsis hypocotyls[J]. Cell Sci. J., 2011, 124(7):1088-1094
    [8]
    MURASHIGE T, SKOOG F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiol. Plantar., 1962, 15(3):473-497
    [9]
    SOGA K. Resistance of plants to gravitational force[J]. Plant Res. J., 2013, 126(5):589-596
    [10]
    GIDDINGS T H, STAEHELIN L A. Microtubule-mediated control of microfibril deposition:a re-examination of the hypothesis[M]//Cytoskeletal Basis of Plant Growth and Form. London:Academic Press, 1991:85-99
    [11]
    HEJNOWICZ Z. Autonomous changes in the orientation of cortical microtubules underlying the helicoidal cell wall of the sunflower hypocotyl epidermis:spatial variation translated into temporal changes[J]. Protoplasma, 2005, 225(3-4):243-256
    [12]
    CHAN J, SAMBADE A, CALDER G, et al. Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules[J]. Plant Cell, 2009, 21(8):2298-2306
    [13]
    ZANDOMENI K, SCHOPFER P. Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress[J]. Protoplasma, 1994, 182(3/4):96-101
    [14]
    BLANCAFLOR E B, HASENSTEIN K H. Growth and microtubule orientation of zea-mays roots subjected to osmotic-stress[J]. Plant Sci. Inter. J., 1995, 156(6):774-783
    [15]
    BALUSKA F, HASENSTEIN K H. Root cytoskeleton:its role in perception of and response to gravity[J]. Planta, 1997, 203:S69-S78
    [16]
    SAURET-GUETO S, CALDER G, HARBERD N P. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells[J]. Plant J., 2012, 69(4):628-639
    [17]
    ISHIDA T, KANEKO Y, IWANO M, et al. Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana[J]. P. Natl. Acad. Sci. USA, 2007, 104(20):8544-8549
    [18]
    MATSUMOTO S, KUMASAKI S, SOGA K, et al. Gravity-induced modifications to development in hypocotyls of arabidopsis tubulin mutants[J]. Plant Physiol., 2010, 152(2):918-926
    [19]
    SOGA K, WAKABAYASHI K, KAMISAKA S, et al. Hypergravity induces reorientation of cortical microtubules and modifies growth anisotropy in azuki bean epicotyls[J]. Planta, 2006, 224(6):1485-1494
    [20]
    SHEN-MILLER J, GORDON S A. Gravitational compensation and the phototropic response of oat coleoptiles[J]. Plant Physiol., 1967, 42(3):352-360
    [21]
    STANKOVIC B, ANTONSEN F, JOHNSSON A, et al. Autonomic straightening of gravitropically curved cress roots in microgravity[J]. Space Life Sci., 2001, 27(5):915-919
    [22]
    COWLES J R, SCHELD H W, LEMAY R, et al. Growth and lignification in seedlings exposed to eight days of microgravity[J]. Ann. Bot., 1984, 54(3):33-48
    [23]
    SOGA K, WAKABAYASHI K, HOSON T, et al. Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism[J]. Adv. Space Res., 2001, 27(5):1011-1016
    [24]
    HOSON T, SOGA K, WAKABAYASHI K, et al. Growth and cell wall changes in rice roots during spaceflight[J]. Plant Soil., 2003, 255(1):19-26
    [25]
    CLAASSEN D E, SPOONER B S. Impact of altered gravity on aspects of cell biology[J]. Int. Rev. Cytol. Surv. Cell Biol., 1994, 156:301-373
    [26]
    SOGA K, CLUB B, KURITA A, et al. Growth and morphogenesis of Azuki bean seedlings in space during SSAF2013 program[J]. Biol. Sci. Space, 2014, 28:6-11
    [27]
    WANG C, LI J J, YUAN M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis[J]. Plant Cell Physiol., 2007, 48(11):1534-1547
    [28]
    MURATOV A, BAULIN V A. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress[J]. Biophys. Chem., 2015, 207:82-89
    [29]
    CHAN J, CALDER G, FOX S, et al. Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells[J]. Nat. Cell Bio., 2007, 9(2):171-175
    [30]
    GUPTA A, SINGH M, JONES A M, et al. Hypocotyl directional growth in arabidopsis:a complex trait[J]. Plant Physiol., 2012, 159(4):1463-1476
    [31]
    SOGA K, WAKABAYASHI K, KAMISAKA S, et al. Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space[J]. Planta, 2002, 215(6):1040-1046
    [32]
    ROLAND J C, REIS D, MOSINIAK M, et al. Cell-wall texture along the growth gradient of the mung bean hypocotyl——ordered assembly and dissipative processes[J]. Cell Sci. J., 1982, 56:303-318
    [33]
    SHEVCHENKO G V. Patterns of cortical microtubules formed in epidermis of Beta vulgaris L. roots under clinorotation[J]. Adv. Space Res., 1999, 24(6):739-742
    [34]
    KALININA I. Microtubules spatial alterations in root cells of Brassica rapa under clinorotation[J]. Cell Bio. Inter., 2008, 32(5):581-583
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(563) PDF Downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return