Volume 39 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
ZHAO Kaixuan, PANG Le, DAI Shanliang, ZHANG Xuexun, LUO Haiyan. Thermal Analysis and Strategy of Optical Gondola under a Stratosphere Airship[J]. Chinese Journal of Space Science, 2019, 39(6): 831-837. doi: 10.11728/cjss2019.06.831
Citation: ZHAO Kaixuan, PANG Le, DAI Shanliang, ZHANG Xuexun, LUO Haiyan. Thermal Analysis and Strategy of Optical Gondola under a Stratosphere Airship[J]. Chinese Journal of Space Science, 2019, 39(6): 831-837. doi: 10.11728/cjss2019.06.831

Thermal Analysis and Strategy of Optical Gondola under a Stratosphere Airship

doi: 10.11728/cjss2019.06.831 cstr: 32142.14.cjss2019.06.831
  • Received Date: 2018-09-18
  • Rev Recd Date: 2019-04-15
  • Publish Date: 2019-11-15
  • Earth limb atmospheric optical observation is one of the important means to study the variation of the characteristics of the middle and upper atmosphere targets. Thermal state of optical remote sensing equipment is very significant to its optical accuracy and SNR control, which directly affects the quality of observation data and the realization of observation task. It is a feasible method to detect mesospheric OH-radicals accurately based on the high-altitude airship platform. A reasonable thermal state is essential to ensure the performance of Spatial Heterodyne Spectrometer (SHS) under a stratosphere airship. In order to meet the thermal control requirements, the thermal environment of the optical gondola and airship is analyzed, and then the thermal mathematical model is established quantitatively. Temperature variations of two typical states, ascent phase and floating phase, are calculated and analyzed successively. The results show that the temperature field and the thermal control measurements can satisfy the temperature control requirement of optical and electronics components. Finally thermal strategy of flight test is analyzed and made correspondingly based on the calculation results of temperature field and heaters. The suggestions for improvement are given, such as increasing initial temperature and total heat capacity, lens protection measures and flexible thermal conduction band for CCD. The analysis method and flight strategy can be used as a useful reference for the design and development of thermal control status of similar equipment.

     

  • loading
  • [1]
    ZHANG Honghai, GAO Yibo, LI Chao, et al. Simulation of limb measurements for mesospheric hydroxyl radical based on SHS detector[J]. Spectrosc. Spect. Anal., 2017, 37(09):2685-2691(张洪海, 高一博, 李超, 等. 针对SHS探测仪的中高层OH自由基临边观测仿真研究[J]. 光谱学与光谱分析, 2017, 37(09):2685-2691)
    [2]
    CHRISTOPH R E, MICHAEL H S, DAVID E S, et al. The Spatial Heterodyne Imager for Mesospheric Radicals(SHIMMER) on STPSat-1[J]. J, Geophys. Res., 2010, 115(D20).DOI: 10.1029/2010JD014398
    [3]
    GASKIN J A, SMITH I S, JONES W V. Introduction to the special issue on scientific balloon capabilities and instrumentation[J]. J. Astron. Instrum., 2014, 3(3):1403001
    [4]
    IRA S S, MICHAEL L. LTA-12:HALE Airship Technologies and Operation[R]. Belfast:AIAA, 2007
    [5]
    BRIAN F O. Thermal Control of the Balloon-Borne Telescope HEROES[R]. Reston:AIAA, 2013
    [6]
    SOLER J D, ADE P A R, ANGILÈ F E, et al. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol[J]. Proc. SPIE, 2014, 9145:914534-914534-18
    [7]
    ISABEL P G, ANGEL S A, NIKOLAI B, et al. Thermal Problems Associated to the Ascent Phase of Stratospheric Balloon Payloads the SUNRISE Mission[R]. Germany:ESA SP-671, 2009
    [8]
    LUO Haiyan, FANG Xuejing, HU Guangxiao, et al. Hyper-resolution spatial heterodyne spectrometer for hydroxyl radical OH[J]. Acta Agron. Sin., 2018, 38(6):0630003(罗海燕, 方雪静, 胡广骁, 等. 中高层大气OH自由基超分辨空间外差光谱仪[J]. 光学学报, 2018, 38(6):0630003)
    [9]
    SUN Kangwen, YANG Qinzhen, YANG Yang. Numerical simulation and thermal analysis of stratospheric airship[J]. Proc. Eng., 2015, 99:763-772
    [10]
    ISABEL P G, ANGEL S A, NIKOLAI B, et al. Transient thermal analysis during the ascent phase of a balloon-borne payload Comparison with SUNRISE test flight measurements[J]. Appl. Therm. Eng., 2009, 29(8-9):1507-1513
    [11]
    GILMORE D G. Spacecraft Thermal Control Handbook Volume I Fundamental Technologies[M]. 2nd ed. Washington DC:American Institute of Aeronautics and Astronautics, 2002:21-69
    [12]
    VARGA D, YOUNG E. Current status of a NASA high-altitude balloon-based observatory for planetary science[C]//AIAA Balloon Systems Conference, 2013.DOI: 10.2514/6.2015-3040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1024) PDF Downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return