Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
WEI Xiaofang, HUANG Chunming. Characteristics of Planetary Wave Activity during the Stratospheric Sudden Warming in the Winter of 2009[J]. Journal of Space Science, 2020, 40(1): 42-51. doi: 10.11728/cjss2020.01.042
Citation: WEI Xiaofang, HUANG Chunming. Characteristics of Planetary Wave Activity during the Stratospheric Sudden Warming in the Winter of 2009[J]. Journal of Space Science, 2020, 40(1): 42-51. doi: 10.11728/cjss2020.01.042

Characteristics of Planetary Wave Activity during the Stratospheric Sudden Warming in the Winter of 2009

doi: 10.11728/cjss2020.01.042
  • Received Date: 2019-02-26
  • Rev Recd Date: 2019-12-04
  • Publish Date: 2020-01-15
  • Based on MERRA reanalyzed data from December 2008 to April 2009, the major SSW event and the relevant Planetary Wave (PW) activities are investigated. Spectral analyses show that the stratosphere over Northern Hemispheric polar region is dominated by quasi-16-day PW during this SSW event. The corresponding amplitudes and phases of its four wave modes, i.e. W1, W2, E1, and E2, have been fitted by using the two-dimensional harmonic fitting method. The results show that all the modes display increasing amplitudes in varying degrees when the westerly wind weakens, and reach their peaks from 50°N to 80°N in the middle and upper stratosphere finally. Particularly, the W2 mode shows the largest increment and the strongest convergence among them, leading to the maximum westerly deceleration of background wind which is more than 4m·-1·d-1. The W2 mode of quasi-16-day PW exhibits the most important contribution to this SSW event. Furthermore, the results also demonstrates that the propagation of PWs is closely related to the movement of zero wind line. The W2 mode propagates vertically upward and shows longitudinally quasi-standing structure in mid-high latitudes, and then propagates to the pole and equator respectively. The mid-high latitudes are likely to be a source region of PWs.


  • loading
  • [1]
    SINGH R P, PALLAMRAJU D. On the latitudinal distribution of mesospheric temperatures during sudden stratospheric warming events[J]. J. Geophys. Res.:Space Phys., 2015, 120(4):2926-2939
    CHARLTON A J, POLVANI L M. A new look at stratospheric sudden warmings. Part I:climatology and modeling benchmarks[J]. J. Climate, 2007, 20(3):449-469
    MANNEY G L, SCHWARTZ M J, KRGER K, et al. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming[J]. Geophys. Res. Lett., 2009, 36(12):267-272
    GARCIA R R. On the mean meridional circulation of the middle atmosphere[J]. J. Atmos. Sci., 1987, 44(24):3599-3609
    KODERA K, FUNATSU B M, CLAUD C, et al. The role of convective overshooting clouds in tropical stratosphere-troposphere dynamical coupling[J]. Atmos. Chem. Phys., 2015, 15(12):6767-6774
    MUKHTAROV P, PANCHEVA D, ANDONOV B, et al. Large-scale thermodynamics of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004[J]. J. Geophys. Res.:Atmos., 2008, 113(D12):259-269
    MATSUNO T. A dynamical model of the stratospheric sudden warming[J]. J. Atmos. Sci., 1971, 28(8):1479-1494
    ANDREWS D, HOLTON J, LEOVY C. Middle atmosphere dynamics[J]. Rev. Geophys., 1983, 21(2):283-290
    SALBY M L. Survey of planetary-scale traveling waves:the state of theory and observations[J]. Rev. Geophys., 1984, 22(2):209-236
    BEARD A G, WILLIAMS P J S, MITCHELL N J, et al. A special climatology of planetary waves and tidal variability[J]. J. Atmos. Sol.:Terr. Phys., 2001, 63(9):801-811
    BANCALÁ, KRÜGER, KIRSTIN, et al. The preconditioning of major sudden stratospheric warmings[J]. J. Geophys. Res. Atmos., 2012, 117(D4):101-113
    LABITZKE K. The amplification of height wave 1 in January 1979:a characteristic precondition for the major warming in February[J]. Monthly Weather Rev., 1981, 109(5):983-989
    VINEETH C, PANT T K, KUMAR K K, et al. Signatures of low latitude-high latitude coupling in the tropical MLT region during sudden stratospheric warming[J]. Geophys. Res. Lett., 2009, 36(20):146-158
    SRIDHARAN S, RAGHUNATH K, SATHISHKUMAR S, et al. First results of warm mesospheric temperature over Gadanki (13.5°N, 79.2°E) during the sudden stratospheric warming of 2009[J]. J. Atmos. Sol.:Terr. Phys., 2010, 72(14/15):1139-1146
    ZHU Lu, JIANG Guoying, XU Jiyao, et al. Quasi-16-day planetary waves during sudden stratospheric warming event[J]. Chin. J. Space. Sci., 2017, 37(4):432-441(朱露, 姜国英, 徐寄遥, 等. 平流层爆发性增温事件中大气准16日行星波[J]. 空间科学学报, 2017, 37(4):432-441)
    PEDATELLA N M, FULLER-ROWELL T, WANG H, et al. The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models[J]. J. Geophys. Res.:Space Phys., 2014, 119(2):1306-1324
    HARADA Y, GOTO A, HASEGAWA H, et al. A major stratospheric sudden warming event in January 2009[J]. J. Atmos. Sci., 2010, 67(6):2052-2069
    IIDA C, HIROOKA T, EGUCHI N. Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009[J]. J. Geophys. Res.:Atmos., 2014, 119(12):7104-7115
    LI Yafei, HU Jinggao, REN Rongcai. A case study of the Northern Hemisphere stratospheric sudden warming in the winter of 2009[J]. Plateau Meteor., 2017, 36(6):1576-1586(李亚飞, 胡景高, 任荣彩. 2009年冬季北半球平流层爆发性增温的个例分析[J]. 高原气象, 2017, 36(6):1576-1586)
    JOHN S R, KUMARK K. Global normal mode planetary wave activity:a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere[J]. Climate Dyn., 2016, 47(12):3863-3881
    WU D L, HAYS P B, SKINNER W R. A least squares method for spectral analysis of space-time series[J]. J. Atmos. Sci., 1995, 52(52):3501-3511
    SCHEIBEN D, TSCHANZ B, HOCKE K, et al. The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012[J]. Atmos. Chem. Phys., 2014, 14(13):6511-6522
    ANDREWS D G, MCINTYRE M E. Generalized Eliassen-Palm and Charney-Drazin theorems for waves in Axismmetric mean flows in compressible atmospheres[J]. J. Atmos. Sci., 1978, 35(1):175-185
    LAN Xiaoqing, CHEN Wen, WANG Lin. Quasi-stationary planetary wave-mean flow interactions in the Northern Hemisphere stratosphere and their responses to ENSO events[J]. Sci. China:Earth Sci., 2011, 42(1):10-23(兰晓青, 陈文, 王林. 北半球平流层准定常行星波与平均流的相互作用及其对ENSO事件的响应[J]. 中国科学:地球科学, 2012, 42(1):10-23)
    MCDONALD A J, HIBBINS R E, JARVIS M J. Properties of the quasi 16 day wave derived from EOS MLS observations[J]. J. Geophys. Res.:Atmos., 2011, 116(D6):405-416
    ALEXANDER S P, SHEPHERD M G. Planetary wave activity in the polar lower stratosphere[J]. Atmos. Chem. Phys., 2010, 10(2):707-718
    XU Luyang, CHEN Quanliang. Planetary wave activity and its impact on different types of SSW events[J]. Plateau Meteor., 2016, 35(5):1389-1400(徐路扬, 陈权亮. 行星波活动对不同类型SSW的影响[J]. 高原气象, 2016, 35(5):1389-1400)
    CHARNEY J G, DRAZIN P G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere[J]. J. Geophys. Res., 1961, 66(1):83-109
    HUANG Zerong, LI Wentao, RUAN Xueqin. Planetary-scale disturbances and their vertical propagation in the lower ionosphere[J]. Chin. J. Space Sci., 1995, 15(2):148-155(黄泽荣, 李文涛, 阮雪琴. 低电离层中的行星波扰动及其垂直传播[J]. 空间科学学报, 1995, 15(2):148-155)
    HUANG Ronghui, HUANGFU Jingliang, LIU Yong, et al. Development from the theory of energy dispersion of Rossby waves to studies on the dynamics of quasi stationary planetary waves[J]. Chin. J. Atmos. Sci., 2016, 40(1):3-21(黄荣辉, 皇甫静亮, 刘永, 等. 从Rossby波能量频散理论到准定常行星波动力学研究的发展[J]. 大气科学, 2016, 40(1):3-21)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(491) PDF Downloads(72) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint