Volume 40 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
GAN Hong, LI Xiongyao, WEI Guangfei. Electric Fields Distribution of Zhinyu Crater in Chang’E-4 Landing Area[J]. Chinese Journal of Space Science, 2020, 40(2): 250-263. doi: 10.11728/cjss2020.02.250
Citation: GAN Hong, LI Xiongyao, WEI Guangfei. Electric Fields Distribution of Zhinyu Crater in Chang’E-4 Landing Area[J]. Chinese Journal of Space Science, 2020, 40(2): 250-263. doi: 10.11728/cjss2020.02.250

Electric Fields Distribution of Zhinyu Crater in Chang’E-4 Landing Area

doi: 10.11728/cjss2020.02.250 cstr: 32142.14.cjss2020.02.250
  • Received Date: 2018-12-18
  • Rev Recd Date: 2020-01-14
  • Publish Date: 2020-03-15
  • Solar radiation and solar wind create a complex dust-plasma environment in lunar crater. Based on the elevation data obtained from the Lunar Orbiter Laser Altimeter (LOLA) onboard Lunar Reconnaissance Orbiter (LRO), we constructed a three-dimensional model of Zhinyu crater which located in the Chang'E-4 landing area, and then calculated the effective solar irradiance and the percentage of illuminated area at different local time in the lunar daytime. The results show that the crater self-shading effect plays an important role in crater illumination conditions, and the percentage of illuminated area reaches 100% only during 10:30LT-13:30LT. In addition, we calculated the distributions of equilibrium surface potential, Debye length and electric field at different local time, which were found to be highly dependent on the crater self-shading effect. Finally, we discussed the relationship of equilibrium surface potential, Debye length and electric field at the bottom of Zhinyu-like crater with local time and latitude. The results show that the distributions of equilibrium surface potential, Debye length and electric field are symmetric along the time of 12:00LT and lunar equator. These values almost remain unchanged on the shadow areas and change slightly on the sunlit areas, but change dramatically at the dead zone.

     

  • loading
  • [1]
    CRISWELL D R. Horizon-glow and the Motion of Lunar Dust, in Photon and Particle Interactions with Surfaces in Space[M]. Dordrecht:Springer, 1973:545-556
    [2]
    RENNILSON J J, CRISWELL D R. Surveyor observations of lunar horizon-glow[J]. Moon, 1974, 10(2):121-142
    [3]
    MCCOY J E, CRISWELL D R. Evidence for a high altitude distribution of lunar dust[R]//Lunar and Planetary Science Conference. Houston:Universities Space Research Association, 1974:2991-3005
    [4]
    ZOOK H A, MCCOY J E. Large scale lunar horizon glow and a high altitude lunar dust exosphere[J]. Geophys. Res. Lett., 1991, 18(11):2117-2120
    [5]
    SEVERNY A B, TEREZ E I, ZVEREVA A M. The measurements of sky brightness on lunokhod-2[J]. Moon, 1975, 14(1):123-128
    [6]
    ZOOK H A, POTTER A E, COOPER B L. The lunar dust exosphere and clementine lunar horizon glow[R]//Lunar and Planetary Science Conference. Houston:Universities Space Research Association, 1995:26
    [7]
    CALLE C I. Measuring electrostatic phenomena on Mars and the Moon[C]//Proceedings of the Institute of Electrostatics Japan. Florida:NASA, 2001:169-279
    [8]
    HEIKEN G H, VANIMAN D T, FRENCH B M. Lunar Sourcebook-A User's Guide to the Moon[M]. Cambridge:Cambridge University Press, 1991:27-60
    [9]
    COLWELL J E, GULBIS A A S, HORÁNYI M, et al. Dust transport in photoelectron layers and the formation of dust ponds on Eros[J]. Icarus, 2005, 175(1):159-169
    [10]
    KONG Linggao, WANG Shijin, WANG Xinyue, et al. Lunar surface plasma dusty environment and exploration[R]//Annual Symposium of Committee of Deep Space Exploration Technology Chinese Society of Astronautics. Hangzhou:Society of Astronautics, 2012:1021-1026(孔令高, 王世金, 王馨悦, 等. 月表尘埃等离子体环境及其探测[R]//中国宇航学会深空探测技术专业委员会学术年会. 杭州:中国宇航学会, 2012:1021-1026)
    [11]
    WAGNER S A. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management[R]. Washington:NASA Technical Report, 2006
    [12]
    GAIER J R. The Effects of Lunar Dust on EVA Systems during the Apollo Missions[R]. Cleveland:NASA Technical Reprot, 2007
    [13]
    GAIER J R, JAWORSKE D A. Lunar dust on heat rejection system surfaces:problems and prospects[J]. AIP Conf. Proc., 2007, 880:27-34
    [14]
    BUHLER C R, CALLE C I, CLEMENTS J S, et al. Test method for in situ electrostatic characterization of lunar dust[C]//2007 IEEE Aerospace Conference. Montana:IEEE, 2007:1-19
    [15]
    NIE Jinqiao. Study on the Surface of the Moon:Lunar Sheath under Complex Topography[D]. Harbin:Harbin Institute of Technology, 2016(聂金桥. 月表复杂地貌形态下的月球表面鞘层研究[D]. 哈尔滨:哈尔滨工业大学, 2016)
    [16]
    HORÁNYI M, WALCH B, ROBERTSON S, et al. Electrostatic charging properties of Apollo 17 lunar dust[J]. J. Geophys. Res. Planets, 1998, 103(E4):8575-8580
    [17]
    COLWELL J E, HORÁNYI M, ROBERTSON S, et al. Behavior of charged dust in plasma and photoelectron sheaths[J]. Dust Planet. Syst., 2007, 643:171-175
    [18]
    SICKAFOOSE A A, COLWELL J E, HORÁNYI M, et al. Experimental levitation of dust grains in a plasma sheath[J]. J. Geophys. Res. Space Phys., 2002, 107 (A11):SMP-37
    [19]
    WANG X, HORÁNYI M, ROBERTSON S. Investigation of dust transport on the lunar surface in a laboratory plasma with an electron beam[J]. J. Geophys. Res. Space Phys., 2010, 115(A11):1-6
    [20]
    WANG X, HORÁNYI M, ROBERTSON S. Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow[J]. J. Geophys. Res. Space Phys., 2009, 114(A5).DOI: 10.1029/2008JA013983
    [21]
    WANG X, HORÁNYI M, ROBERTSON S. Dust transport near electron beam impact and shadow boundaries[J]. Planet. Space Sci., 2011, 59(14):1791-1794
    [22]
    WANG X, PILEWSKIE J, HSU H W, et al. Plasma potential in the sheaths of electron-emitting surfaces in space[J]. Geophys. Res. Lett., 2016, 43(2):525-531
    [23]
    WANG J, HE X, CAO Y. Modeling electrostatic levitation of dust particles on lunar surface[J]. IEEE Trans. Plasma Sci., 2008, 36(5):2459-2466
    [24]
    BORISOV N, MALL U. Charging and motion of dust grains near the terminator of the Moon[J]. Planet. Space Sci., 2006, 54(6):572-580
    [25]
    FARRELL W M, STUBBS T J, VONDRAK R R, et al. Complex electric fields near the lunar terminator:the near-surface wake and accelerated dust[J]. Geophys. Res. Lett., 2007, 34(14).DOI: 10.1029/2007GL029312
    [26]
    STUBBS T J, FARRELL W M, HALEKAS J S, et al. Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation[J]. Planet. Space Sci., 2014, 90:10-27
    [27]
    POPPE A R, PIQUETTE M, LIKHANSKII A, et al. The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport[J]. Icarus, 2012, 221(1):135-146
    [28]
    PIQUETTE M, HORÁNYI M. The effect of asymmetric surface topography on dust dynamics on airless bodies[J]. Icarus, 2017, 291:65-74
    [29]
    HUGHES A M, WILNER D J, CALVET N, et al. An inner hole in the disk around tw hydrae resolved in 7mm dust emission[J]. Astrophys. J., 2007, 664(1):536-542
    [30]
    LIKHANSKII A, POPPE A R, PIQUETTE M, et al. Plasma sheath at Moon craters:from sunrise to sunset[R]. Lunar and Planetary Science Conference. Woodlands:Universities Space Research Association, 2011:2285
    [31]
    POPPE A R, HORÁNYI M. Simulations of the photoelectron sheath and dust levitation on the lunar surface[J]. J. Geophys. Res. Space Phys., 2010, 115(A8). DOI: 10.1029/2010JA015286
    [32]
    POPPE A R, HALEKAS J S, HORÁNYI M. Negative potentials above the day-side lunar surface in the terrestrial plasma sheet:evidence of non-monotonic potentials[J]. Geophys. Res. Lett., 2011, 38(2):L02103
    [33]
    PIKE R J. Size-dependence in the shape of fresh impact craters on the Moon[C]//Impact and Explosion Cratering:Planetary and Terrestrial Implications. New York:Pergamon Press, 1977:489-509
    [34]
    STOPAR J D, HAWKE B R, ROBINSON M S, et al. Distribution, occurrence, and degradation of impact melt associated with small lunar craters[R]. Lunar and Planetary Science Conference. Woodlands:Universities Space Research Association, 2012:115-118
    [35]
    DAVIDSSON B J R, RICKMAN H, BANDFIELD J L, et al. Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies[J]. Icarus, 2015, 252:1-21
    [36]
    AHARONSON O, SCHORGHOFER N. Subsurface ice on Mars with rough topography[J]. J. Geophys. Res. Planets, 2006, 111(E11):23723
    [37]
    HALEKAS J S, DELORY G T, STUBBS T J, et al. The dynamic plasma and electric field environment near the lunar terminator and polar regions[R]. NLSI Lunar Science Conference. Moffett Field:Lunar Science Institute, 2008:1415
    [38]
    HALEKAS J S, DELORY G T, LIN R P, et al. Lunar surface charging during solar energetic particle events:measurement and prediction[J]. J. Geophys. Res. Space Phys., 2009, 114(A05110).DOI: 10.1029/2009JA014113
    [39]
    STUBBS T J, VONDRAK R R, FARRELL W M. A dynamic fountain model for lunar dust[J]. Adv. Space Res., 2006, 37(1):59-66
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1180) PDF Downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return