Volume 40 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
ZHANG Qingfen, ZHENG Yang, CHENG Guohao, LU Zhicong, ZHOU Xiaomei, WANG Yuchen. Contour Detection of Disk Resolved Objects in Cassini ISS Image Using Deep Neural Network[J]. Chinese Journal of Space Science, 2020, 40(2): 289-295. doi: 10.11728/cjss2020.02.289
Citation: ZHANG Qingfen, ZHENG Yang, CHENG Guohao, LU Zhicong, ZHOU Xiaomei, WANG Yuchen. Contour Detection of Disk Resolved Objects in Cassini ISS Image Using Deep Neural Network[J]. Chinese Journal of Space Science, 2020, 40(2): 289-295. doi: 10.11728/cjss2020.02.289

Contour Detection of Disk Resolved Objects in Cassini ISS Image Using Deep Neural Network

doi: 10.11728/cjss2020.02.289 cstr: 32142.14.cjss2020.02.289
  • Received Date: 2018-09-03
  • Rev Recd Date: 2019-08-02
  • Publish Date: 2020-03-15
  • In the astrometry of CCD image, it is important to match image stars with catalogue stars to correct the camera's pointing. The onboard Imaging Science Subsystem (ISS) in Cassini orbiter has taken a large number of images of targets which are disk resolved. In the astrometry of these images, the false image stars are often detected in the disk. It disturbs the pointing correction of camera and decline the precision of the astrometry. Therefore, it is helpful to find the contours of the disk to remove the false image stars. One method based on deep learning is proposed to detect the contour of disk resolved object in ISS images. A convolutional neural network was set up by the framework TensorFlow, in which the input is the nine features of each pixel, and the output is the classification of each pixel: contour pixel or non-contour pixel. The neural network is trained by about 36000 pixels, and then it is used to detect the contour pixels in 380 ISS images. Compared with the contour pixels labeled by hand, the contour pixels detected by neural network have the precision of 78.26% and the recall ratio of 73.32%. It proved that the proposed method is available to find the contour of disk resolved target in ISS images.

     

  • loading
  • [1]
    PORCO C, WEST R A, SQUYRES S, et al. Cassini imaging science:instrument characteristics and anticipated scientific investigations at Saturn[J]. Space Sci. Rev., 2004, 115:363-497
    [2]
    COOPER N, MURRAY C, PORCO C, et al. Cassini ISS astrometric observations of the inner Jovian satellites, Amalthea and Thebe[J]. Icarus, 2006, 181:223-234
    [3]
    COOPER N J, MURRAY C D, LAINEY V, et al. Cassini ISS mutual event astrometry of the mid-sized Saturnian satellites 2005-2012[J]. Astron. Astrophys., 2014, 572:A43
    [4]
    TAJEDDINE R, COOPER N J, LAINEY V, et al. Astrometric reduction of Cassini ISS images of the Saturnian satellites Mimas and Enceladus[J]. Astron. Astrophys., 2013, 551:A129
    [5]
    TAJEDDINE R, LAINEY V, COOPER N J, et al. Cassini ISS astrometry of the Saturnian satellites:Tethys, Dione, Rhea, Iapetus, and Phoebe 2004-2012[J]. Astron. Astrophys., 2015, 575:A73
    [6]
    ZHANG Q F, LAINEY V, COOPER N J, et al. First astrometric reduction of Cassini Imaging Science Subsystem images using an automatic procedure:application to Enceladus images 2013-2017[J]. Mon. Not. R. Astron. Soc., 2018, 481:98-104
    [7]
    ZHANG Q F, XIONG Y T, PENG Q Y, et al. Astrometric reduction of Cassini ISS images of Helene (in Chinese)[J]. Sci. Sin.:Phys. Mech. Astron., 2019, 49(1):96-103(张庆丰, 熊语桃, 彭青玉, 等. Helene的Cassini ISS图像的天体测量[J]. 中国科学:物理学力学天文学, 2019, 49(1):96-103)
    [8]
    ZHARKOVA V V, IPSON S S, ZHARKOVA S I, et al. A full-disk image standardisation of the synoptic solar observations at the Meudon Observatory[J]. Sol. Phys., 2003, 214(1):89-105
    [9]
    YUAN F, LIN J B, GUO J J, et al. Automatic detection of solar features in HSOS full-disk solar images using guided filter[J]. New Astron., 2018, 59:38-44
    [10]
    PU Junyu, ZHENG Yong, LI Chonghui, et al. A moon image center extraction algorithm adapted to moon phase change (in Chinese)[J]. J. Geomat. Sci. Technol., 2017, 34(05):461-465(蒲俊宇, 郑勇, 李崇辉, 等. 一种能适应月相变化的月球图像中心提取算法[J]. 测绘科学技术学报, 2017, 34(05):461-465)
    [11]
    PU Junyu, ZHENG Yong, CHEN Shaojie, et al. Geocentric position extraction algorithm of Earth sensor image of lunar rover (in Chinese)[J]. Chin. J. Space Sci., 2018, 38(2):239-248(蒲俊宇, 郑勇, 陈少杰, 等. 月球车地球敏感器图像地心位置提取算法[J]. 空间科学学报, 2018, 38(2):239-248)
    [12]
    LIU Han, GUO Yong, ZHENG Gang, et al. Edge detection based on least squares support vector machines[J]. Acta Electron. Sin., 2006, 34(7):1275-1279(刘涵, 郭勇, 郑岗, 等. 基于最小二乘支持向量机的图像边缘检测研究[J]. 电子学报, 2006, 34(7):1275-1279)
    [13]
    XIA Wei, WANG Ping, MA Jiayan, et al. Image edge detection based on image information measure and extreme learning machine[J]. Microcomput. Appl., 2017, 33(11):74-78
    [14]
    LU Hongtao, ZHANG Qinchuan. Application of deep convolutional neural network in computer vision[J]. J. Data Acq. Process., 2016, 31(1):1-16
    [15]
    JIN Tao, ZHANG Yongai. Digital recognition based on deep learning in TensorFlow platform[J]. Inform. Technol. Network Secur., 2018, 37(4):78-82
    [16]
    GONZALEZ R C, WOODS R E. Digital Image Processing[M]. 3rd Edition. America:Prentice Hall Press, 2011
    [17]
    GAO Fei, HUANG Qihong, CHENG Weidong, et al. Research of improvement of Sobel operator on edge detection[J]. Digital Technol. Appli., 2016, 2016(1):143-145
    [18]
    XIA Jing. A Comparative Study of Ellipses Fitting Methods[D]. Guangzhou:Jinan University, 2007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1745) PDF Downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return