Volume 40 Issue 3
May  2020
Turn off MathJax
Article Contents
YUE Shuwen, DU Wangfang, LI Kai, ZHAO Jianfu. Gravity Independence Analysis Based on Bubble Departure in Flow Boiling[J]. Chinese Journal of Space Science, 2020, 40(3): 376-381. doi: 10.11728/cjss2020.03.376
Citation: YUE Shuwen, DU Wangfang, LI Kai, ZHAO Jianfu. Gravity Independence Analysis Based on Bubble Departure in Flow Boiling[J]. Chinese Journal of Space Science, 2020, 40(3): 376-381. doi: 10.11728/cjss2020.03.376

Gravity Independence Analysis Based on Bubble Departure in Flow Boiling

doi: 10.11728/cjss2020.03.376 cstr: 32142.14.cjss2020.03.376
  • Received Date: 2020-04-15
  • Rev Recd Date: 2020-04-22
  • Publish Date: 2020-05-15
  • The density difference between gas and liquid phases in the flow boiling phenomenon leads to the important influence of gravity on the flow and heat transfer performance. Therefore, the study of gravity effect is of great significance for the space application of flow boiling. The Bower-Klausner-Sathyanarayan gravity independent criterion, i.e. BKS criterion, is revisited. It is pointed out that BKS criterion has congenital defect in theory and cannot reflect the gravity effect correctly. Using the same departure model of growing vapor bubble in flow boiling as adopted in BKS criterion, but neglecting the sliding effect of bubble along the heating wall, the departure diameters of single bubble in the initial segment after the boiling incipience under different flow directions in normal gravity are calculated. A new gravity independent criterion based on Froude number is concluded, which is in better agreement with the experimental results. The new criterion is in principle consistent with the dominant force criterion.

     

  • loading
  • [1]
    DU Wangfang, ZHAO Jianfu, LI Kai. Criteria for dominated force regime map in multiphase thermal fluid system[J]. J. Hebei Univ. Water Res. Elec. Eng., 2018, 1:1-5, 12
    [2]
    DU Wangfang, YUE Shuwen, ZHAO Jianfu, et al. Criterion of gravity independence in multiphase thermal fluid system[J]. J. Hebei Univ. Water Res. Elec. Eng., 2019, 2:1-7
    [3]
    BOWER J S, KLAUSNER J F, SATHYANARAYAN S. High heat flux, gravity independent, two-phase heat exchangers for spacecraft thermal management[J]. SAE J. Aerosp., 2002, 24(4):695-712
    [4]
    BOWER J S, KLAUSNER J F. Gravity independent subcooled flow boiling heat transfer regime[J]. Exp. Therm. Fluid Sci., 2006, 31(2):141-149
    [5]
    KLAUSNER J F, MEI R, BERNHARD D M, et al. Vapor bubble departure in forced convection boiling[J]. Int. J. Heat Mass Transfer, 1993, 36(3):651-662
    [6]
    ZENG L Z, KLAUSNER J F, BERNHARD D M, et al. A unified model for the prediction of bubble detachment diameters in boiling systems-I!I. Flow boiling[J]. Int. J. Heat Mass Transfer, 1993, 36(9):2261-2270
    [7]
    THORNCROFT G E, KLAUSNER J F, MEI R. Bubble forces and detachment models[J]. Multiphase Sci. Tech., 2001, 13(3-4):35-76
    [8]
    ROY C, VENUVANALINGAM P, KLAUSNER J F, et al. On the mechanism of bubble induced forced convective heat transfer enhancement[J]. Front. Heat Mass Transfer, 2018, 11(1):1-12
    [9]
    CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Ind. Eng. Chem. Proc. Des. Dev., 1966, 5(3):322-329
    [10]
    GUNGOR K E, WINTERTON R H S. A general correlation for flow boiling in tubes and annuli[J]. Int. J. Heat Mass Transfer, 1986, 29(3):351-358
    [11]
    KANDLIKAR S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. J. Heat Transfer, 1990, 112(1):219-228
    [12]
    THOME J R, DUPONT V, JACOBI A M. Heat transfer model for evaporation in microchannels, part I:presentation of the model[J]. Int. J. Heat Mass Transfer, 2004, 47(14-16):3375-3385
    [13]
    YUN B J, SPLAWSKI A, LO S, et al. Prediction of a subcooled boiling flow with advanced two-phase flow models[J]. Nucl. Eng. Des., 2012, 253:351-359
    [14]
    LEBON M, SEBILLEAU J, COLIN C. Dynamics of growth and detachment of an isolated bubble on an inclined surface[J]. Phys. Rev. Fluids, 2018, 3(7):073602
    [15]
    REICHARDT H, MUNZNER H. Rotationally symmetric source-sink bodies with predominantly constant pressure distributions[J]. Arm. Res. Est. Trans, 1950, 50(1):1-7
    [16]
    ZUBER N. The dynamics of vapor bubbles in nonuniform temperature fields[J]. Int. J. Heat Mass Transfer, 1961, 2(1-2):83-98
    [17]
    FRITZ W. The calculation of the maximum volume of steam bladders[J]. Phys. Zeitschr., 1935, 36:379-384
    [18]
    FRITZ W, ENDE W. The evaporation procedure after cinematographic absorption on steam bubbles[J]. Physik. Zeitschr., 1936, 37:391-401
    [19]
    ZHAO J F, XIE J C, LIN H, et al. Experimental study of two-phase flow in microgravity[A]//Proc. 51st International Astronautical Congress[C]//Rio de Janeiro, Brazil:IAF, 2000
    [20]
    BABA S, SAKAI T, SAWADA K, et al. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"[J]. J. Phys. Conf. Ser., 2011, 327:012055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1068) PDF Downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return