Citation: | YUE Shuwen, DU Wangfang, LI Kai, ZHAO Jianfu. Gravity Independence Analysis Based on Bubble Departure in Flow Boiling[J]. Chinese Journal of Space Science, 2020, 40(3): 376-381. doi: 10.11728/cjss2020.03.376 |
[1] |
DU Wangfang, ZHAO Jianfu, LI Kai. Criteria for dominated force regime map in multiphase thermal fluid system[J]. J. Hebei Univ. Water Res. Elec. Eng., 2018, 1:1-5, 12
|
[2] |
DU Wangfang, YUE Shuwen, ZHAO Jianfu, et al. Criterion of gravity independence in multiphase thermal fluid system[J]. J. Hebei Univ. Water Res. Elec. Eng., 2019, 2:1-7
|
[3] |
BOWER J S, KLAUSNER J F, SATHYANARAYAN S. High heat flux, gravity independent, two-phase heat exchangers for spacecraft thermal management[J]. SAE J. Aerosp., 2002, 24(4):695-712
|
[4] |
BOWER J S, KLAUSNER J F. Gravity independent subcooled flow boiling heat transfer regime[J]. Exp. Therm. Fluid Sci., 2006, 31(2):141-149
|
[5] |
KLAUSNER J F, MEI R, BERNHARD D M, et al. Vapor bubble departure in forced convection boiling[J]. Int. J. Heat Mass Transfer, 1993, 36(3):651-662
|
[6] |
ZENG L Z, KLAUSNER J F, BERNHARD D M, et al. A unified model for the prediction of bubble detachment diameters in boiling systems-I!I. Flow boiling[J]. Int. J. Heat Mass Transfer, 1993, 36(9):2261-2270
|
[7] |
THORNCROFT G E, KLAUSNER J F, MEI R. Bubble forces and detachment models[J]. Multiphase Sci. Tech., 2001, 13(3-4):35-76
|
[8] |
ROY C, VENUVANALINGAM P, KLAUSNER J F, et al. On the mechanism of bubble induced forced convective heat transfer enhancement[J]. Front. Heat Mass Transfer, 2018, 11(1):1-12
|
[9] |
CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Ind. Eng. Chem. Proc. Des. Dev., 1966, 5(3):322-329
|
[10] |
GUNGOR K E, WINTERTON R H S. A general correlation for flow boiling in tubes and annuli[J]. Int. J. Heat Mass Transfer, 1986, 29(3):351-358
|
[11] |
KANDLIKAR S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. J. Heat Transfer, 1990, 112(1):219-228
|
[12] |
THOME J R, DUPONT V, JACOBI A M. Heat transfer model for evaporation in microchannels, part I:presentation of the model[J]. Int. J. Heat Mass Transfer, 2004, 47(14-16):3375-3385
|
[13] |
YUN B J, SPLAWSKI A, LO S, et al. Prediction of a subcooled boiling flow with advanced two-phase flow models[J]. Nucl. Eng. Des., 2012, 253:351-359
|
[14] |
LEBON M, SEBILLEAU J, COLIN C. Dynamics of growth and detachment of an isolated bubble on an inclined surface[J]. Phys. Rev. Fluids, 2018, 3(7):073602
|
[15] |
REICHARDT H, MUNZNER H. Rotationally symmetric source-sink bodies with predominantly constant pressure distributions[J]. Arm. Res. Est. Trans, 1950, 50(1):1-7
|
[16] |
ZUBER N. The dynamics of vapor bubbles in nonuniform temperature fields[J]. Int. J. Heat Mass Transfer, 1961, 2(1-2):83-98
|
[17] |
FRITZ W. The calculation of the maximum volume of steam bladders[J]. Phys. Zeitschr., 1935, 36:379-384
|
[18] |
FRITZ W, ENDE W. The evaporation procedure after cinematographic absorption on steam bubbles[J]. Physik. Zeitschr., 1936, 37:391-401
|
[19] |
ZHAO J F, XIE J C, LIN H, et al. Experimental study of two-phase flow in microgravity[A]//Proc. 51st International Astronautical Congress[C]//Rio de Janeiro, Brazil:IAF, 2000
|
[20] |
BABA S, SAKAI T, SAWADA K, et al. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"[J]. J. Phys. Conf. Ser., 2011, 327:012055
|