Citation: | WANG Yanhui, ZHOU Binghong. Effect of Initial Liquid Hydrogen Temperature on the Pressure Changes in the Cryogenic Propellant Tank[J]. Chinese Journal of Space Science, 2020, 40(3): 394-400. doi: 10.11728/cjss2020.03.394 |
[1] |
CHU Guimin. Propellant management of cryogenic upper stage during coast[J]. Missle Space Vehcile, 2007, 287(1):27-31(褚桂敏. 低温上面级滑行段的推进剂管理[J]. 导弹与航天运载技术, 2007, 287(1):27-31)
|
[2] |
ZILLIAC G, KARABEYOGLU M A. Modeling of propellant tank pressurization[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson:AIAA, 2005:3549
|
[3] |
KARTUZOVA O, KASSEMI M. Modeling interfacial turbulent heat transfer during ventless pressurization of a large scale cryogenic storage tank in microgravity[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. San Diego:AIAA, 2011:6037
|
[4] |
CORPENING J H. Analytic modeling of pressurization and cryogenic propellant conditions for lunar landing vehicle[C]//57th JANNAF Joint Propulsion Meeting. Colorado:NASA, 2010:M10-0427
|
[5] |
CHEN Hong, GAO Xu, REN Gang, et al. CFD study on discharging process of liquid hydrogen in tank with helium as pressurized gas[J]. Cryogenics, 2015, 206(4):33-38(陈虹, 高旭, 任刚, 等. 氦气作为增压气体排出贮罐内液氢过程的CFD分析[J]. 低温工程, 2015, 206(4):33-38)
|
[6] |
LIU Zhan, LI Yanzhong, WANG Lei, et al. Evaporation calculation and pressurization process of on-orbit cryogenic liquid hydrogen storage tank[J]. J. Xi'an Jiaotong Univ., 2015, 49(2):135-140(刘展, 厉彦忠, 王磊, 等. 在轨运行低温液氢箱体蒸发量计算与增压过程研究[J]. 西安交通大学学报, 2015, 49(2):135-140)
|
[7] |
LI Jiachao, LIANG Guozhu. Numerical simulation of phase change and heat transfer in crygenic tank under the ground and microgravity condition[J]. Chin. J. Space Sci., 2016, 36(4):513-519(李佳超, 梁国柱. 地面及微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4):513-519)
|
[8] |
LIU Zhan, SUN Peijie, LI Peng, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogenics, 2016, 209(1):25-31(刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016, 209(1):25-31)
|
[9] |
PLACHATA D W, CHRISTIE R J, JURNS J M, et al. Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mission concepts[J]. Cryogenics, 2006, 46(2):89-97
|
[10] |
HASTINGS L J, PLACHTA D W, SALERNO L, et al. An overview of NASA efforts on zero boil storage of cryogenics propellants[J]. Cryogenics, 2002, 41:833-839
|
[11] |
SHAO Yetao, LUO Shu, WANG Haosu, et al. Research on the supercooling loading technology of cryogenic propellant and its effects on rocket performance[J]. Astronaut. Syst. Eng. Tech., 2019, 3(2):18-25(邵业涛, 罗庶, 王浩苏, 等. 低温推进剂深度过冷加注技术研究及对运载火箭性能影响分析[J]. 宇航总体技术, 2019, 3(2):18-25)
|
[12] |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100:335-354
|
[13] |
XU Jiyun. Boiling Heat Transfer and Gas-liquid Two-phase Flow[M]. Beijing:Atomic Energy Press, 2001:215-220(徐济鋆. 沸腾传热和气液两相流[M]. 北京:原子能出版社, 2001:215-220)
|
[14] |
ZHOU Binghong, WANG Yanhui, GA Yongjing, et al. Model simplification method in numerical simulation of complex flow and heat transfer process of launch vehicle propellant[J]. Astronaut. Syst. Eng. Tech., 2019, 3(2):26-29(周炳红, 王妍卉, 尕永婧, 等. 运载火箭推进剂复杂流动传热问题数值模拟中的模型简化方法[J]. 宇航总体技术, 2019, 3(2):26-29)
|