Volume 41 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
SUN Xiaoying, DUAN Suping, LIU Weining. Correlation Analysis between Magnetic Storms and Solar Extreme Ultraviolet Radiation during the 23rd Solar Cycle[J]. Chinese Journal of Space Science, 2021, 41(5): 697-703. doi: 10.11728/cjss2021.05.697
Citation: SUN Xiaoying, DUAN Suping, LIU Weining. Correlation Analysis between Magnetic Storms and Solar Extreme Ultraviolet Radiation during the 23rd Solar Cycle[J]. Chinese Journal of Space Science, 2021, 41(5): 697-703. doi: 10.11728/cjss2021.05.697

Correlation Analysis between Magnetic Storms and Solar Extreme Ultraviolet Radiation during the 23rd Solar Cycle

doi: 10.11728/cjss2021.05.697 cstr: 32142.14.cjss2021.05.697
  • Received Date: 2020-04-29
  • Rev Recd Date: 2020-12-11
  • Publish Date: 2021-09-15
  • The statistics of magnetic storms with moderate and higher intensity during the 23rd solar cycle are presented, and investigated the correlation by linear analysis between the intensity of the magnetic storm Dstmin and the solar Extreme Ultraviolet Radiation (EUV) intensity by using the observation of F10.7 index before the maximum of the storm main phase. Our statistical analysis results show that during the 23rd solar cycle:firstly, with an increase in solar EUV input, the number of moderate or higher intensity storms increases. There are 56 moderate or higher intensity storms under low solar extreme ultraviolet radiation activity, 85 storms under intermediate solar extreme ultraviolet radiation activity, and 80 events under high solar extreme ultraviolet radiation activity. Secondly, with increasing EUV input, the number and the probability of strong (-200nT ≤ Dstmin<-100nT) and big (Dstmin< -200nT) storms occurring also show an increasing trend, especially the number (1, 4, 12) and the probability (1.79%, 4.76%, 14.12%) of big storms. Thirdly, there is a moderate positive correlation of big storm (|Dstmin|) with F10.7, where the correlation coefficient is 0.532, and the correlation of big storm (|Dstmin|) with F10.7 is more significantly under high solar extreme ultraviolet radiation activity, where the coefficient is 0.582. Our results that there exists the moderate positive correlation of big storm with high solar extreme ultraviolet radiation activity can provide foundation information for space weather forecasting.

     

  • loading
  • [1]
    LATHUILLERE C, MENVIELLE M, LILENSTEN J, et al. From the Sun's atmosphere to the Earth's atmosphere:an overview of scientific models available for space weather developments[J]. Ann. Geophys., 2002, 20:1081-1104
    [2]
    LEAN J L, WOODS T N, EPARVIER F, et al. Solar extreme ultraviolet irradiance:present, past, and future[J]. J. Geophys. Res. Space Phys., 2011, 116(A1).DOI:10. 1029/2010JA015901
    [3]
    LIN Y C, CHU Y H. Model simulations of ion and electron density profiles in ionospheric E and F regions:ionospheric plasma density simulation[J]. J. Geophys. Res.:Space Phys., 2017, 122(2).DOI: 10.1002/2016JA022855
    [4]
    QIAN L, BURNS A G, CHAMBERLIN P, et al. Flare location on the solar disk:modeling the thermosphere and ionosphere response[J]. J. Geophys. Res. Space Phys., 2010, 115(A9).DOI: 10.1029/2009JA015225
    [5]
    GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. J. Geophys. Res., 1994, 99(A4):5771
    [6]
    DAGLIS I A. The storm-time ring current[J]. Space Sci. Rev., 2001, 98(3/4):343-363
    [7]
    KRONBERG E A, ABDALLA A M, DANDOURAS L, et al. Circulation of heavy ions and their dynamical effects in the magnetosphere:recent observations and models[J]. Space Sci. Rev., 2014, 184(1/2/3/4):173-235
    [8]
    DAGLIS I A. The role of magnetosphere-ionosphere coupling in magnetic storm dynamics[C]//American Geophysical Union. Washington DC:AGU, 1997
    [9]
    KAMIDE Y, MALTSEV Y P. Geomagnetic Storms[M]. New York:Springer Berlin Heidelberg, 2007:355-374
    [10]
    NOSÉ M, TAKAHASHI K, OHTANI S, et al. Dynamics of ions of ionospheric origin during magnetic storms:their acceleration mechanism and transport path to ring current[J]. Geophys. Monog. Ser., 2013, 155:61-71
    [11]
    SHELLEY E G, JOHNSON R G, SHARP R D. Satellite observations of energetic heavy ions during a geomagnetic storm[J]. J. Geophys. Res., 1972, 77(31):6104-6110
    [12]
    DAGLIS I A. Ring current dynamics[J]. Space Sci. Rev., 2006, 124(1/2/3/4):183-202
    [13]
    HULTQVIST B, ØIEROSET M, PASCHMANN G, et al. Magnetospheric Plasma Sources and Losses[M]. Dordrecht:Springer, 1999:1-5
    [14]
    ADLER N O D, ANA G ELÍAS, MANZANO J R. Solar cycle length variation:its relation with ionospheric parameters[J]. J. Atmos. Sol.:Terr. Phys., 1997, 59(2):159-162
    [15]
    LIU L, WAN W, NING B, et al. Solar activity variations of the ionospheric peak electron density[J]. J. Geophys. Res. Atmos., 2006, 111(A8).DOI: 10.1029/2006ja011598
    [16]
    CULLY C M. Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow:dependence on magnetic activity and solar wind conditions[J]. J. Geophys. Res., 2003, 108(A2).DOI: 10.1029/2001ja009200
    [17]
    SLAPAK R, NILSSON H. The oxygen ion circulation in the outer terrestrial magnetosphere and its dependence on geomagnetic activity[J]. Geophys. Res. Lett., 2018, 45(23):12669-12676
    [18]
    TAPPING K F. The 10.7cm solar radio flux (F10.7)[J]. Space Weather, 2013, 11(7):394-406
    [19]
    YAU A W, PETERSON W K, SHELLEY E G. Quantitative parametrization of energetic ionospheric ion outflow[J]. Geophys. Monog. Ser., 1988, 44:211-217
    [20]
    LIU L, WAN W, YUE X, et al. The dependence of plasma density in the topside ionosphere on the solar activity level[J]. Ann. Geophys., 2007, 25(6):1337-1343
    [21]
    KISTLER L M, MOUIKIS C G. The inner magnetosphere ion composition and local time distribution over a solar cycle[J]. J. Geophys. Res.:Space Phys., 2016, 121(3):2009-2032
    [22]
    MOORE T E, CHANDLER M O, FOK M C, et al. Ring currents and internal plasma sources[J]. Space Sci. Rev., 2001, 95(1-2):555-568
    [23]
    PETERSON W K, ANDERSSON L, CALLAHAN B, et al. Geomagnetic activity dependence of O+ in transit from the ionosphere[J]. J. Atmos. Sol.:Terr. Phys., 2009, 71(16):1623-1629
    [24]
    VEIBELL V, WEIGEL R S, DENTON R E. Solar wind, F10.7, and geomagnetic activity relationship to the equatorial plasma mass density at geosynchronous orbit[J]. Space Weather:Int. J. Res. Appl., 2016, 14(12):1095-1106
    [25]
    ZHAO K, JIANG Y, DING L G, et al. Statistical analysis of outflow ionospheric O+ on the declining phase of solar cycle 23 using fast observations[J]. Planet. Space Sci., 2014, 101:170-180
    [26]
    CATTELL C A, NGUYEN T, TEMERIN M, et al. Effects of Solar Cycle on Auroral Particle Acceleration[M]//Auroral Plasma Dynamics. Washington DC:American Geophysical Union (AGU), 2013
    [27]
    FU Shuai, JIANG Yong, ZHAO Kai, et al. Solar activity dependence of ionosphere ion upflow in the polar topside[J]. Chin. J. Space Sci., 2017, 37(1):28-38(傅帅, 蒋勇, 赵凯, 等. 极区顶部电离层离子上行的太阳活动依赖性研究[J]. 空间科学学报, 2017, 37(1):28-38)
    [28]
    ZHOU Kangjun, CAI Hongtao, LI Ying, et al. Geomagnetic activity dependences of high-latitude dayside ionospheric ion upflows[J]. Chin. J. Geophys., 2018, 61(2):423-436(周康俊, 蔡红涛, 李影, 等. 高纬日侧电离层离子上行的地磁活动依赖性研究[J]. 地球物理学报, 2018, 61(2):423-436)
    [29]
    GREENSPAN M E, HAMILTON D C. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum[J]. J. Geophys. Res.:Space Phys., 2002, 107(A4).DOI: 10.1029/2001ja000155
    [30]
    DUAN S, DAI L, WANG C, et al. Oxygen Ions O+ Energized by Kinetic Alfvén eigenmode during dipolarizations of intense substorms[J]. J. Geophys. Res. Space Phys., 2017, 122(11):11256-11273
    [31]
    FOK M C, MOORE T E, BRANDT P C, et al. Impulsive enhancements of oxygen ions during substorms[J]. J. Geophys. Res. Atmos., 2006, 111(A10).DOI: 10.1029/2006-ja011839
    [32]
    FU Suiyuan, PU Zuyin, ZONG Qiugang, et al. Ion Composition variations in the ring current during intense magnetic storms and their relationship with evolution of storms[J]. Chin. J. Geophys., 2001, 44(1):1-11(傅绥燕, 濮祖荫, 宗秋刚, 等. 大磁暴中环电流离子成分的变化及其与磁暴演化的关系[J]. 地球物理学报, 2001, 44(1):1-11)
    [33]
    FU S Y, ZONG Q G, WILKEN B, et al. Temporal and spatial variation of the ion composition in the ring current[J]. Space Sci. Rev., 2001, 95(1-2):539-554
    [34]
    MAGGIOLO R. Spatial variation in the plasma sheet composition:dependence on geomagnetic and solar activity[J]. J. Geophys. Res.:Space Phys., 2014, 119(4):2836-2857
    [35]
    OHTANI S, NOSÉ M, CHRISTON S P, et al. Energetic O+ and H+ ions in the plasma sheet:implications for the transport of ionospheric ions[J]. J. Geophys. Res.:Space Phys., 2011, 116(A10):A10211
    [36]
    HARRA L K, CARGILL P J. Coronal Mass Ejection[M]. New York:Springer Berlin Heidelberg, 2007
    [37]
    ST CYR O C, HOWARD R A, SHEELEY N R, et al. Properties of coronal mass ejections:SOHO LASCO observations from January 1996 to June 1998[J]. J. Geophys. Res.:Space Phys., 2000, 105(A8):18169-18185
    [38]
    YASHIRO S. A catalog of white light coronal mass ejections observed by the SOHO spacecraft[J]. J. Geophys. Res.:Space Phys., 2004, 109(A7):A07105
    [39]
    BOROVSKY J E, DENTON M H. Differences between CME-driven storms and CIR-driven storms[J]. J. Geophys. Res.:Space Phys., 2006, 111(A7).DOI: 10.1029/2005ja011447
    [40]
    LIU J, LIU L B, ZHAO B Q, et al. Response of the topside ionosphere to recurrent geomagnetic activity[J]. J. Geophys. Res.:Space Phys., 2010, 115.DOI: 10.1029/2010JA015810
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(753) PDF Downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return