Citation: | SUN Xiaoying, DUAN Suping, LIU Weining. Correlation Analysis between Magnetic Storms and Solar Extreme Ultraviolet Radiation during the 23rd Solar Cycle[J]. Chinese Journal of Space Science, 2021, 41(5): 697-703. doi: 10.11728/cjss2021.05.697 |
[1] |
LATHUILLERE C, MENVIELLE M, LILENSTEN J, et al. From the Sun's atmosphere to the Earth's atmosphere:an overview of scientific models available for space weather developments[J]. Ann. Geophys., 2002, 20:1081-1104
|
[2] |
LEAN J L, WOODS T N, EPARVIER F, et al. Solar extreme ultraviolet irradiance:present, past, and future[J]. J. Geophys. Res. Space Phys., 2011, 116(A1).DOI:10. 1029/2010JA015901
|
[3] |
LIN Y C, CHU Y H. Model simulations of ion and electron density profiles in ionospheric E and F regions:ionospheric plasma density simulation[J]. J. Geophys. Res.:Space Phys., 2017, 122(2).DOI: 10.1002/2016JA022855
|
[4] |
QIAN L, BURNS A G, CHAMBERLIN P, et al. Flare location on the solar disk:modeling the thermosphere and ionosphere response[J]. J. Geophys. Res. Space Phys., 2010, 115(A9).DOI: 10.1029/2009JA015225
|
[5] |
GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. J. Geophys. Res., 1994, 99(A4):5771
|
[6] |
DAGLIS I A. The storm-time ring current[J]. Space Sci. Rev., 2001, 98(3/4):343-363
|
[7] |
KRONBERG E A, ABDALLA A M, DANDOURAS L, et al. Circulation of heavy ions and their dynamical effects in the magnetosphere:recent observations and models[J]. Space Sci. Rev., 2014, 184(1/2/3/4):173-235
|
[8] |
DAGLIS I A. The role of magnetosphere-ionosphere coupling in magnetic storm dynamics[C]//American Geophysical Union. Washington DC:AGU, 1997
|
[9] |
KAMIDE Y, MALTSEV Y P. Geomagnetic Storms[M]. New York:Springer Berlin Heidelberg, 2007:355-374
|
[10] |
NOSÉ M, TAKAHASHI K, OHTANI S, et al. Dynamics of ions of ionospheric origin during magnetic storms:their acceleration mechanism and transport path to ring current[J]. Geophys. Monog. Ser., 2013, 155:61-71
|
[11] |
SHELLEY E G, JOHNSON R G, SHARP R D. Satellite observations of energetic heavy ions during a geomagnetic storm[J]. J. Geophys. Res., 1972, 77(31):6104-6110
|
[12] |
DAGLIS I A. Ring current dynamics[J]. Space Sci. Rev., 2006, 124(1/2/3/4):183-202
|
[13] |
HULTQVIST B, ØIEROSET M, PASCHMANN G, et al. Magnetospheric Plasma Sources and Losses[M]. Dordrecht:Springer, 1999:1-5
|
[14] |
ADLER N O D, ANA G ELÍAS, MANZANO J R. Solar cycle length variation:its relation with ionospheric parameters[J]. J. Atmos. Sol.:Terr. Phys., 1997, 59(2):159-162
|
[15] |
LIU L, WAN W, NING B, et al. Solar activity variations of the ionospheric peak electron density[J]. J. Geophys. Res. Atmos., 2006, 111(A8).DOI: 10.1029/2006ja011598
|
[16] |
CULLY C M. Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow:dependence on magnetic activity and solar wind conditions[J]. J. Geophys. Res., 2003, 108(A2).DOI: 10.1029/2001ja009200
|
[17] |
SLAPAK R, NILSSON H. The oxygen ion circulation in the outer terrestrial magnetosphere and its dependence on geomagnetic activity[J]. Geophys. Res. Lett., 2018, 45(23):12669-12676
|
[18] |
TAPPING K F. The 10.7cm solar radio flux (F10.7)[J]. Space Weather, 2013, 11(7):394-406
|
[19] |
YAU A W, PETERSON W K, SHELLEY E G. Quantitative parametrization of energetic ionospheric ion outflow[J]. Geophys. Monog. Ser., 1988, 44:211-217
|
[20] |
LIU L, WAN W, YUE X, et al. The dependence of plasma density in the topside ionosphere on the solar activity level[J]. Ann. Geophys., 2007, 25(6):1337-1343
|
[21] |
KISTLER L M, MOUIKIS C G. The inner magnetosphere ion composition and local time distribution over a solar cycle[J]. J. Geophys. Res.:Space Phys., 2016, 121(3):2009-2032
|
[22] |
MOORE T E, CHANDLER M O, FOK M C, et al. Ring currents and internal plasma sources[J]. Space Sci. Rev., 2001, 95(1-2):555-568
|
[23] |
PETERSON W K, ANDERSSON L, CALLAHAN B, et al. Geomagnetic activity dependence of O+ in transit from the ionosphere[J]. J. Atmos. Sol.:Terr. Phys., 2009, 71(16):1623-1629
|
[24] |
VEIBELL V, WEIGEL R S, DENTON R E. Solar wind, F10.7, and geomagnetic activity relationship to the equatorial plasma mass density at geosynchronous orbit[J]. Space Weather:Int. J. Res. Appl., 2016, 14(12):1095-1106
|
[25] |
ZHAO K, JIANG Y, DING L G, et al. Statistical analysis of outflow ionospheric O+ on the declining phase of solar cycle 23 using fast observations[J]. Planet. Space Sci., 2014, 101:170-180
|
[26] |
CATTELL C A, NGUYEN T, TEMERIN M, et al. Effects of Solar Cycle on Auroral Particle Acceleration[M]//Auroral Plasma Dynamics. Washington DC:American Geophysical Union (AGU), 2013
|
[27] |
FU Shuai, JIANG Yong, ZHAO Kai, et al. Solar activity dependence of ionosphere ion upflow in the polar topside[J]. Chin. J. Space Sci., 2017, 37(1):28-38(傅帅, 蒋勇, 赵凯, 等. 极区顶部电离层离子上行的太阳活动依赖性研究[J]. 空间科学学报, 2017, 37(1):28-38)
|
[28] |
ZHOU Kangjun, CAI Hongtao, LI Ying, et al. Geomagnetic activity dependences of high-latitude dayside ionospheric ion upflows[J]. Chin. J. Geophys., 2018, 61(2):423-436(周康俊, 蔡红涛, 李影, 等. 高纬日侧电离层离子上行的地磁活动依赖性研究[J]. 地球物理学报, 2018, 61(2):423-436)
|
[29] |
GREENSPAN M E, HAMILTON D C. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum[J]. J. Geophys. Res.:Space Phys., 2002, 107(A4).DOI: 10.1029/2001ja000155
|
[30] |
DUAN S, DAI L, WANG C, et al. Oxygen Ions O+ Energized by Kinetic Alfvén eigenmode during dipolarizations of intense substorms[J]. J. Geophys. Res. Space Phys., 2017, 122(11):11256-11273
|
[31] |
FOK M C, MOORE T E, BRANDT P C, et al. Impulsive enhancements of oxygen ions during substorms[J]. J. Geophys. Res. Atmos., 2006, 111(A10).DOI: 10.1029/2006-ja011839
|
[32] |
FU Suiyuan, PU Zuyin, ZONG Qiugang, et al. Ion Composition variations in the ring current during intense magnetic storms and their relationship with evolution of storms[J]. Chin. J. Geophys., 2001, 44(1):1-11(傅绥燕, 濮祖荫, 宗秋刚, 等. 大磁暴中环电流离子成分的变化及其与磁暴演化的关系[J]. 地球物理学报, 2001, 44(1):1-11)
|
[33] |
FU S Y, ZONG Q G, WILKEN B, et al. Temporal and spatial variation of the ion composition in the ring current[J]. Space Sci. Rev., 2001, 95(1-2):539-554
|
[34] |
MAGGIOLO R. Spatial variation in the plasma sheet composition:dependence on geomagnetic and solar activity[J]. J. Geophys. Res.:Space Phys., 2014, 119(4):2836-2857
|
[35] |
OHTANI S, NOSÉ M, CHRISTON S P, et al. Energetic O+ and H+ ions in the plasma sheet:implications for the transport of ionospheric ions[J]. J. Geophys. Res.:Space Phys., 2011, 116(A10):A10211
|
[36] |
HARRA L K, CARGILL P J. Coronal Mass Ejection[M]. New York:Springer Berlin Heidelberg, 2007
|
[37] |
ST CYR O C, HOWARD R A, SHEELEY N R, et al. Properties of coronal mass ejections:SOHO LASCO observations from January 1996 to June 1998[J]. J. Geophys. Res.:Space Phys., 2000, 105(A8):18169-18185
|
[38] |
YASHIRO S. A catalog of white light coronal mass ejections observed by the SOHO spacecraft[J]. J. Geophys. Res.:Space Phys., 2004, 109(A7):A07105
|
[39] |
BOROVSKY J E, DENTON M H. Differences between CME-driven storms and CIR-driven storms[J]. J. Geophys. Res.:Space Phys., 2006, 111(A7).DOI: 10.1029/2005ja011447
|
[40] |
LIU J, LIU L B, ZHAO B Q, et al. Response of the topside ionosphere to recurrent geomagnetic activity[J]. J. Geophys. Res.:Space Phys., 2010, 115.DOI: 10.1029/2010JA015810
|