Volume 41 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
WANG Zhenzhan, WANG Wenyu, DONG Xiaolong, LIU Jingyi, ZHANG Dehai. Martian Atmosphere Study Using THz Limb Sounder[J]. Chinese Journal of Space Science, 2021, 41(5): 778-786. doi: 10.11728/cjss2021.05.778
Citation: WANG Zhenzhan, WANG Wenyu, DONG Xiaolong, LIU Jingyi, ZHANG Dehai. Martian Atmosphere Study Using THz Limb Sounder[J]. Chinese Journal of Space Science, 2021, 41(5): 778-786. doi: 10.11728/cjss2021.05.778

Martian Atmosphere Study Using THz Limb Sounder

doi: 10.11728/cjss2021.05.778 cstr: 32142.14.cjss2021.05.778
  • Received Date: 2020-03-20
  • Rev Recd Date: 2020-12-21
  • Publish Date: 2021-09-15
  • Mars is one of the main targets of deep space exploration. Continuous and high spatial resolution global monitoring of Martian atmosphere is an important way to understand the aeronomy and meteorology of Mars. The atmospheric wind and chemical species in the photochemical cycle such as CO, O3, H2O, H2O2 can be measured in large scale by Terahertz limb sounding technique to improve our understanding of Martian atmospheric chemistry and dynamics. The spectrum in the frequency region of 300~1000GHz is analyzed according to the request of Mars exploration. Considering the requirements of the satellite on the parameters of load weight and power, a Martian atmosphere THz limb sounder working in the frequency of 547~579GHz is proposed. The planetary toolbox of ARTS is used to simulate the performance of the instrument. Results show that by using CO lines to retrieve the temperature profile, the total precision can be < 4K. The precision is < 2K at an altitude below 45km. The retrieval precision of H2O is < 50% at an altitude below 50km, and the best precision is 2%. The retrieval precision of H2O2 is < 50% below 40km. The retrieval precision of O3 is < 60% below 50km. The retrieval precision of the atmospheric line of sight wind is < 5m·s-1 above 65km, and the best precision is 2m·s-1. In conclusion, the middle and upper atmospheric wind and the abundance of the chemical species can be well measured by using THz limb sounding technique.

     

  • loading
  • [1]
    CHENG Yizhi. The present and the future of Mars exploration-countries rush to land[J]. Aerosp. China, 2009, 8:33-37(程亦之. 火星探测的现在和未来-各国争相奋进登陆[J]. 中国航天, 2019, 8:33-37)
    [2]
    SMITH M D. Spacecraft observations of the martian atmosphere[J]. Ann. Rev. Earth Planet. Sci., 2008, 36:191-219
    [3]
    ZUREK R W, CHICARRO A, ALLEN M A, et al. Assessment of a 2016 mission concept:the search for trace gases in the atmosphere of Mars[J]. Planet. Space Sci., 2011, 59(2/3):284-291
    [4]
    NEEFS E, VANDAELE A C, DRUMMOND R, et al. NOMAD spectrometer on the ExoMars trace gas orbiter mission:part 1-design, manufacturing and testing of the infrared channels[J]. Appl. Opt., 2015, 54(28):8494-8520
    [5]
    KORABLEV O, MONTMESSIN F, TROKHIMOVSKIY A, et al. The atmospheric chemistry suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter[J]. Space Sci. Rev., 2018, 214:7
    [6]
    THOMAS N, CREMONESE G, ZIETHE R, et al. The colour and stereo surface imaging system (CaSSIS) for the ExoMars trace gas orbiter[J]. Space Sci. Rev., 2017, 212:1897-1944
    [7]
    MITROFANOV I, MALAKHOV A, BAKHTIN B, et al. Fine Resolution Epithermal Neutron Detector (FREND) onboard the ExoMars trace gas orbiter[J]. Space Sci. Rev., 2018, 214:86
    [8]
    KASAI Y, SAGAWA H, KURODA T, et al. Overview of the Martian atmospheric submillimetre sounder FIRE[J]. Planet. Space Sci., 2012, 63/64:62-82
    [9]
    FU Jia, WANG Zhenzhan. Simulation of microwave and sub~millimeter wave radiation from 1 to 3000GHz of planetary atmosphere[J]. Chin. J. Space Sci., 2017, 37(2):192-201(付佳, 王振占. 行星大气1~3000GHz微波-亚毫米波辐射模拟[J]. 空间科学学报, 2017, 37(2):192-201)
    [10]
    MUHLEMAN D O, CLANCY T T. Microwave spectroscopy of the Mars atmosphere[J]. Appl. Opt., 1995, 34(27):6067-6080
    [11]
    ROTHMAN L S, GORDON I E, BABIKOV Y, et al. The HITRAN 2012molecular spectroscopic database[J]. J. Quant. Spectrosc. Rad. Trans., 2013, 130:4-50
    [12]
    REZAC L, HARTOGH P, GÜSTEN R, et al. First detection of the 63μm atomic oxygen linein the thermosphere of Mars with GREAT/SOFIA[J]. Astron. Astrophys., 2015, 580:10
    [13]
    BUEHLER S A, MENDROK J, ERIKSSON P, et al. ARTS, the atmospheric radiative transfer simulator-version 2.2, the planetary toolbox edition[J]. Geosci. Model Dev., 2018, 11(4):1537-1556
    [14]
    RODGERS C D. Inverse Methods for Atmospheric Sounding:Theory and Practice[M]. Singapore:World Scientific, 2000
    [15]
    MARTINET P, DABAS A, DONIER J M, et al. 1D-Var temperature retrievals from microwave radiometer and convective scale model[J]. Tellus A:Dynam. Meteorol. Oceanog., 2015, 67(1):27925
    [16]
    WANG Wengyu, WANG Zhenzhan, DUAN Yongqiang. Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China[J]. Atmos. Meas. Tech., 2020, 13(1):13-38
    [17]
    ERIKSSON P, JIMENEZ C, BUEHLER S A. Qpack, a general tool for instrument simulation and retrieval work[J]. J. Quant. Spectrosc. Ra., 2005, 91:47-64
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(833) PDF Downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return