Volume 41 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Bingyan, YAN Zhaoai, GUO Wenjie, HU Xiong. Optimization of Atmospheric Radiative Transfer Model LBLRTM Based on Measured CO2 Data[J]. Chinese Journal of Space Science, 2021, 41(6): 905-910. doi: 10.11728/cjss2021.06.905
Citation: ZHANG Bingyan, YAN Zhaoai, GUO Wenjie, HU Xiong. Optimization of Atmospheric Radiative Transfer Model LBLRTM Based on Measured CO2 Data[J]. Chinese Journal of Space Science, 2021, 41(6): 905-910. doi: 10.11728/cjss2021.06.905

Optimization of Atmospheric Radiative Transfer Model LBLRTM Based on Measured CO2 Data

doi: 10.11728/cjss2021.06.905 cstr: 32142.14.cjss2021.06.905
  • Received Date: 2020-03-20
  • Rev Recd Date: 2021-01-22
  • Publish Date: 2021-11-15
  • According to the CO2 observation data of TIMED/SABER from 2002 to 2018, analyze the variation characteristics of CO2 concentration, gives the monthly average fitting formula of CO2 concentration varying with time, height and latitude according to the various characteristics, and uses the nonlinear least square fitting method to fit the CO2 concentration data of different heights and latitudes respectively to generate corresponding fitting parameters, Then, summarize all fitting parameters and generate the fitting parameter file. Combined with the fitting formula, the empirical calculation module of global CO2 concentration is constructed, and the module is applied to the atmospheric radiative transfer model LBLRTM to optimize LBLRTM. Comparing the simulation results of the optimized LBLRTM model with the TIMED/SABER observation data, the root mean square error between the simulation results of the not optimized LBLRTM model and the observation value is 15.4%, while the root mean square error between the simulation results of the optimized LBLRTM model and the observation value is reduced to 8.91%. The results show that this optimization method can further improve the radiation simulation accuracy of the LBLRTM model in the infrared band.

     

  • loading
  • [1]
    SHI Guangyu. Atmospheric Radiation[M]. Beijing:Science Press, 2007(石广玉. 大气辐射学[M]. 北京:科学出版社, 2007)
    [2]
    RAO Ruizhong. Modern Atmospheric Optics[M]. Beijing:Science Press, 2012(饶瑞中. 现代大气光学[M]. 北京:科学出版社, 2012)
    [3]
    WEI Heli, CHEN Xiuhong, RAO Ruizhong. Introduction to the combined atmospheric radiative transfer software CART[J]. J. Atmos. Environ. Opt., 2007, 6:446-450(魏合理, 陈秀红, 饶瑞中. 通用大气辐射传输软件CART介绍[J]. 大气与环境光学学报, 2007, 6:446-450)
    [4]
    GUO Jing, YANG Chunping, ZENG Dandan, et al. Wide spectrum and rapid calculation model for atmos pheric radiative transfer in limb remote sensing[J]. J. Remote Sens., 2015, 19(1):93-107(郭晶, 杨春平, 曾丹丹, 等. 临边遥感大气辐射传输的宽光谱快速计算模型[J]. 遥感学报, 2015, 19(1):93-107)
    [5]
    CLOUGH S A, SHEPHARD M W, MLAWER E J, et al. Atmospheric radiative transfer modeling:a summary of the AER codes[J]. J. Quant. Spectrosc. Ra., 2005, 91(2):233-244
    [6]
    EMMERT J T, STEVENS M H, BERNATH P F, et al. Observations of increasing carbon dioxide concentration in Earth's thermosphere[J]. Nat. Geosci., 2012, 5(12):868-869
    [7]
    YUE Jia, RUSSELL James, JIAN Yongxiao, et al. Increasing carbon dioxide concentration in the upper atmosphere observed by SABER[J]. Geophys. Res. Lett., 2015, 42(17):7194-7199
    [8]
    LIU Dong. The Study of Characteristics of Infrared Radiation of Middle and Upper Atmosphere and Its Application Based on Model[D]. Hefei:University of Science and Technology of China, 2018(刘栋. 中高层大气红外辐射特性数值模拟研究及其应用[D]. 合肥:中国科学技术大学, 2018)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(834) PDF Downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return