Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WEI Dong, YU Yiqun. Statistics of Ion Downward Flows in the Ionosphere during Subauroral Polarization Streams (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 73-81.  DOI: 10.11728/cjss2022.01.200724066
Citation: WEI Dong, YU Yiqun. Statistics of Ion Downward Flows in the Ionosphere during Subauroral Polarization Streams (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 73-81.  DOI: 10.11728/cjss2022.01.200724066

Statistics of Ion Downward Flows in the Ionosphere during Subauroral Polarization Streams

doi: 10.11728/cjss2022.01.200724066
  • Received Date: 2020-07-24
  • Accepted Date: 2020-08-11
  • Rev Recd Date: 2021-06-09
  • Available Online: 2022-05-25
  • During geomagnetically disturbed times, enhanced westward plasma flows appear in the duskside subauroral ionosphere and are termed as Subauroral Polarization Streams (SAPS). SAPS are usually believed as one of the most important features of the magnetosphere-ionosphere coupling and play an important role in regulating the ionospheric dynamics. Generally, SAPS can give rise to local ion upward flows, but there are few studies on ion downward flows. Based on the observations of DMSP satellites during 16 magnetic storm from 2001 to 2015, we find 102 cases with ion downward flows in all the 483 SAPS events. The occurrence rate of ion downward flows, the distribution of ion downward flows in the Northern and Southern Hemispheres, and the favored conditions for the formation of ion downward flows are further analyzed in these SAPS events. The results show that the occurrence rate of ion downward flow is relatively low in SAPS events, and the number and distribution of ion downward flow events are different on the two hemispheres. A linear relationship is found between the SAPS and ion downward flow velocities. Furthermore, the formation of ion downward flow is most probably caused by the combined effects of ambipolar diffusion and gravity. The intensity of ion thermal movement has significant influence on the velocity of ion downward flow. These results will help us to further understand the regulating effects of SAPS on the ionosphere.

     

  • loading
  • [1]
    ANDERSON P C, HANSON W B, HEELIS R A, et al. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A4): 6069-6078 doi: 10.1029/92JA01975
    [2]
    FOSTER J C, BURKE W J. SAPS: A new categorization for subauroral electric fields[J]. Eos, Transactions, American Geophysical Union, 2002, 83(36): 393-394
    [3]
    ANDERSON P C, CARPENTER D L, TSURUDA K, et al. Multisatellite observations of rapid subauroral ion drifts (SAID)[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A12): 29585-29600 doi: 10.1029/2001JA000128
    [4]
    HUANG C S, FOSTER J C. Correlation of the Subauroral Polarization Streams (SAPS) with the Dst index during severe magnetic storms[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A11): A11302
    [5]
    ERICKSON P J, BEROZ F, MISHION M Z. Statistical characterization of the American sector subauroral polarization stream using incoherent scatter radar[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A5): A00J21
    [6]
    HE F, ZHANG X X, WANG W B, et al. Different evolution patterns of Subauroral Polarization Streams (SAPS) during intense storms and quiet time substorms[J]. Geophysical Research Letters, 2017, 44(21): 10796-10804
    [7]
    FOSTER J C, VO H B. Average characteristics and activity dependence of the subauroral polarization stream[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1475
    [8]
    ANDERSON P C, HEELIS R A, HANSON W B. The ionospheric signatures of rapid subauroral ion drifts[J]. Journal of Geophysical Research: Space Physics, 1991, 96(A4): 5785-5792 doi: 10.1029/90JA02651
    [9]
    ERICKSON P J, GONCHARENKO L P, NICOLLS M J, et al. Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72(4): 292-301 doi: 10.1016/j.jastp.2009.04.001
    [10]
    FIGUEIREDO S, KARLSSON T, MARKLUND G T. Investigation of subauroral ion drifts and related field-aligned currents and ionospheric Pedersen conductivity distribution[J]. Annales Geophysicae, 2004, 22(3): 923-934 doi: 10.5194/angeo-22-923-2004
    [11]
    KUNDURI B S R, BAKER J B H, RUOHONIEMI J M, et al. An examination of inter-hemispheric conjugacy in a subauroral polarization stream[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A8): A08225
    [12]
    CALIFF S, LI X, WOLF R A, et al. Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams[J]. Journal of Geophysical Research: Space Physics, 2016, 121(6): 5294-5306 doi: 10.1002/2015JA022252
    [13]
    ZHENG Y, BRANDT P C, LUI A T Y, et al. On ionospheric trough conductance and subauroral polarization streams: simulation results[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A4): A04209
    [14]
    YEH H-C, FOSTER J C. Storm time heavy ion outflow at mid-latitude[J]. Journal of Geophysical Research: Space Physics, 1990, 95(A6): 7881-7891 doi: 10.1029/JA095iA06p07881
    [15]
    SPIRO R W, HEELIS R A, HANSON W B. Rapid subauroral ion drifts observed by atmosphere explorer C[J]. Geophysical Research Letters, 1974, 6(8): 657-660
    [16]
    YU Y, JORDANOVA V, ZOU S, et al. Modeling subauroral polarization streams during the 17 March 2013 storm[J]. Journal of Geophysical Research: Space Physics, 2015, 120(3): 1738-1750 doi: 10.1002/2014JA020371
    [17]
    BURKE W J, RUBIN A G, MAYNARD N C, et al. Ionospheric disturbances observed by DMSP at middle to low latitudes during the magnetic storm of June 4–6, 1991[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18391-18405 doi: 10.1029/1999JA000188
    [18]
    PUHL-QUINN P A, MATSUI H, MISHIN E V, et al. Cluster and DMSP observations of SAID electric fields[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A5): A05219
    [19]
    SOUTHWOOD D J, WOLF R A. An assessment of the role of precipitation in magnetospheric convection[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A11): 5227-5232 doi: 10.1029/JA083iA11p05227
    [20]
    KARLSSON T, MARKLUND G T, BLOMBERG L G. Subauroral electric fields observed by the Freja satellite: A statistical study[J]. Journal of Geophysical Research: Space Physics, 1998, 103: 4327-4341 doi: 10.1029/97JA00333
    [21]
    WANG H, RIDLEY A J, LUHR H, et al. Statistical study of the subauroral polarization stream: Its dependence on the cross–polar cap potential and subauroral conductance[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A12): A12311
    [22]
    HE F, ZANG X X, WANG W B, et al. Large-scale structure of subauroral polarization streams during the main phase of a severe geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2018, 123(4): 2964-2973 doi: 10.1002/2018JA025234
    [23]
    GROCOTT A, MILAN S E, BAKER J B H, et al. Dynamic subauroral ionospheric electric fields observed by the Falkland Islands radar during the course of a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A11): A112021
    [24]
    KATAOKA R, HOSOKAWA K, NISHITANI N, et al. SuperDARN Hokkaido radar observation of westward flow enhancement in subauroral latitudes[J]. Annales Geophysicae, 2009, 27(4): 1695-1699 doi: 10.5194/angeo-27-1695-2009
    [25]
    TSYGANENKO N A, SITNOV M I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2015, 110(A3): A03208
    [26]
    SMIDDY M, SAGALYN R, SHUMAN B, et al. Intense poleward-directed electric fields near the ionospheric projection of the plasmapause[J]. Geophysical Research. Letters, 1977, 4(11): 543-546 doi: 10.1029/GL004i011p00543
    [27]
    MAYNARD N C. On large poleward-directed electric fields at sub-auroral latitudes[J]. Geophysical Research. Letters, 1978, 5(7): 617-618 doi: 10.1029/GL005i007p00617
    [28]
    SPIRO R W, HEELIS R A, HANSON W B. Ion convection and the formation of the mid-latitude F region ionization trough[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A9): 4255-4264 doi: 10.1029/JA083iA09p04255
    [29]
    FOSTER J C, RIDEOUT W, SANDEL B, et al. On the relationship of SAPS to storm enhanced density[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(3): 303-313 doi: 10.1016/j.jastp.2006.07.021
    [30]
    GOLDSTEIN J, SANDEL B R, THOMSEN M F, et al. Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A3): A03202
    [31]
    FOSTER J C, ERICKSON P J, COSTER A J, et al. Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere[J]. Geophysical Research. Letters, 2014, 41(3): 762-768 doi: 10.1002/2013GL059124
    [32]
    THOMAS E G, BAKER J B H, RUOHONIEMI J M, et al. Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density[J]. Journal of Geophysical Research: Space Physics, 2013, 118(3): 1180-1189 doi: 10.1002/jgra.50116
    [33]
    WANG H, LUHR H. Seasonal variation of the ion upflow in the topside ionosphere during SAPS (subauroral polarization stream) periods[J]. Annales Geophysicae, 2013, 31: 1521-1534 doi: 10.5194/angeo-31-1521-2013
    [34]
    MOFFET R J, HEELIS R A, SELLEK R, et al. The temporal evolution of the ionospheric signatures of subauroral ion drifts[J]. Planetary and Space Science, 1992, 40(5): 663-670 doi: 10.1016/0032-0633(92)90007-B
    [35]
    HORVATH I, BRIAN C L. Investigating the development of double-peak subauroral ion drift (DSAID)[J]. Journal of Geophysical Research: Space Physics, 2017, 122(4): 4525-4542
    [36]
    ENDO M, FUJII R, OGAWA Y, et al. Ion upflow and downflow at the topside ionosphere observed by the EISCAT VHF radar[J]. Annales Geophysicae, 2000, 18: 170-181 doi: 10.1007/s00585-000-0170-3
    [37]
    FOSTER J C. Storm time plasma transport at middle and high latitudes[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A2): 1675-1689 doi: 10.1029/92JA02032
    [38]
    ZOU S S, MOLDWIN M B, RIDLEY A J, et al. On the generation/decay of the storm-enhanced density plumes: Role of the convection flow and field-aligned ion flow[J]. Journal of Geophysical Research: Space Physics, 2014, 119(10): 8543-8559 doi: 10.1002/2014JA020408
    [39]
    RICH F J, HAIRSTON M. Large-scale convection patterns observed by DMSP[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A3): 3827-3844 doi: 10.1029/93JA03296
    [40]
    GREENSPAN M E, ANDERSON P B, PELAGATTI J M. Characteristics of the Thermal Plasma Monitor (SSIES) (Special Sensor for Ions, Electrons, and Scintillation) for the Defense Meteorological Satellite Program (DMSP) Spacecraft S8 through S10[R]. Bedford: Air Force Geophysics Laboratory, Hanscom Air Force Base, 1986
    [41]
    HARDY D A, SCHMITT L K, GUSSENHOVEN M S, et al. Precipitating electron and ion detectors (SSJ/4) for the block 5 D/flights 6-10 DMSP satellites: Calibration and data presentation[R]. Bedford: Air Force Geophysics Laboratory, Hanscom Air Force Base, 1984
    [42]
    HE F, ZHANG X X, CHEN B. Solar cycle, seasonal, and diurnal variations of subauroral ion drifts: Statistical results[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 5076-5086 doi: 10.1002/2014JA019807
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article Views(333) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return