Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
HOU Xuting, CAO Haijun, FU Xiaohui, ZHANG Jiang, LI Bo, LING Zongcheng. Formation and Degradation of Lunar Crater Ray and Possible Geochronology Application (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 127-135.  DOI: 10.11728/cjss2022.01.201014091
Citation: HOU Xuting, CAO Haijun, FU Xiaohui, ZHANG Jiang, LI Bo, LING Zongcheng. Formation and Degradation of Lunar Crater Ray and Possible Geochronology Application (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 127-135.  DOI: 10.11728/cjss2022.01.201014091

Formation and Degradation of Lunar Crater Ray and Possible Geochronology Application

doi: 10.11728/cjss2022.01.201014091
  • Received Date: 2020-10-14
  • Accepted Date: 2021-04-29
  • Rev Recd Date: 2021-07-09
  • Available Online: 2022-05-25
  • Crater rays are formed during a cratering event as target material is ballistically ejected to distances of many crater radii forming narrow, generally high albedo, approximately linear features extending outward from the crater. The formation and degradation of lunar crater ray is one of the hot topics in lunar science. In this paper, the current understanding of crater ray origin, their different types on lunar surface, and the processes related with degradation of lunar crater ray systems are summarized. After the formation of the crater rays, the fresh and bright ejecta materials around the crater gradually mature under the joint action of a variety of geological processes, and reflectivity gradually disappears in accordance with the background. The OMAT profiles of young craters with various ages were compared. It is found that the average OMAT profile of crater ray could be fitted with the power law function; and that the shape of the OMAT profiles is strongly dependent on the exposure time on lunar surface as well as the crater age. This suggests that by using young crater with ray and known age as the reference, an empirical equation between the shape parameter and age could be built. This study provides a new method for dating young lunar craters.

     

  • loading
  • [1]
    PIETERS C M, ADAMS J B, MOUGINIS-MARK P J, et al. The nature of crater rays: The Copernicus example[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B14): 12393-12413 doi: 10.1029/JB090iB14p12393
    [2]
    HAWKE B R, BLEWETT D T, LUCEY P G, et al. The origin of lunar crater rays[J]. Icarus, 2004, 170(1): 1-16 doi: 10.1016/j.icarus.2004.02.013
    [3]
    MCEWEN A S, PREBLICH B S, TURTLE E P, et al. The rayed crater Zunil and interpretations of small impact craters on Mars[J]. Icarus, 2005, 176(2): 351-381 doi: 10.1016/j.icarus.2005.02.009
    [4]
    NEISH C D, BLEWETT D T, HARMON J K, et al. A comparison of rayed craters on the Moon and Mercury[J]. Journal of Geophysical Research: Planets, 2013, 118(10): 2247-2261 doi: 10.1002/jgre.20166
    [5]
    NEUKUM G, IVANOV B A, HARTMANN W K. Cratering records in the inner solar system in relation to the Lunar reference system[J]. Space Science Reviews, 2001, 96(1): 55-86
    [6]
    BUDNEY C J, LUCEY P G. Basalt thickness in Mare Humorum: The crater excavation method[J]. Journal of Geophysical Research: Planets, 1998, 103(E7): 16855-16870 doi: 10.1029/98JE01602
    [7]
    THOMSON B J, GROSFILS E B, BUSSEY D B J, et al. A new technique for estimating the thickness of mare basalts in Imbrium Basin[J]. Geophysical Research Letters, 2009, 36: 12
    [8]
    FU X H, ZOU Y L, ZHENG Y C, et al. Effects of space weathering on diagnostic spectral features: results from He+ irradiation experiments[J]. Icarus, 2012, 219(2): 630-640 doi: 10.1016/j.icarus.2012.03.009
    [9]
    SHOEMAKER E M. Preliminary Analysis of the Fine Structure of the Lunar Surface in Mare Cognitum[M]. Cambridge, Cambridge: University Press, 1965
    [10]
    MELOSH H J. Impact Cratering: a Geologic Process[M]. New York: Oxford University Press (Oxford Monographs on Geology and Geophysics, No. 11), 1989: 253
    [11]
    OBERBECK V R. A mechanism for the production of lunar crater rays[J]. The Moon, 1971, 2(3): 263-278 doi: 10.1007/BF00561880
    [12]
    OBERBECK V R. The role of ballistic erosion and sedimentation in lunar stratigraphy[J]. Reviews of Geophysics, 1975, 13(2): 337-362 doi: 10.1029/RG013i002p00337
    [13]
    LUCEY P, KOROTEV R L, GILLIS J J, et al. Understanding the Lunar Surface and Space-Moon Interactions[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1): 83-219 doi: 10.2138/rmg.2006.60.2
    [14]
    XIAO Z Y, ZENG Z X, DING N, et al. Mass wasting features on the Moon – how active is the Lunar surface[J]. Earth and Planetary Science Letters, 2013, 376: 1-11 doi: 10.1016/j.jpgl.2013.06.015
    [15]
    BORG J, COMSTOCK G M, LANGEVIN Y, et al. A Monte Carlo model for the exposure history of lunar dust grains in the ancient solar wind[J]. Earth and Planetary Science Letters, 1976, 29(1): 161-174 doi: 10.1016/0012-821X(76)90036-4
    [16]
    MCGETCHIN T R, SETTLE M, HEAD J W. Radial thickness variation in impact crater ejecta: implications for lunar basin deposits[J]. Earth and Planetary Science Letters, 1973, 20(2): 226-236 doi: 10.1016/0012-821X(73)90162-3
    [17]
    LUCEY P G, BLEWETT D T, TAYLOR G J, et al. Imaging of lunar surface maturity[J]. Journal of Geophysical Research: Planets, 2000, 105(E8): 20377-20386 doi: 10.1029/1999JE001110
    [18]
    GRIER J A, MCEWEN A S, LUCEY P G. Optical maturity of ejecta from large rayed lunar craters[J]. Journal of Geophysical Research:Planets, 2001, 106(E12): 32847-32862 doi: 10.1029/1999JE001160
    [19]
    HIESINGER H, VAN DER BOGERT C H, PASCKERT J H, et al. How old are young lunar craters[J]. Journal of Geophysical Research: Planets, 2012. 117(E12)
    [20]
    MEYER JR C, BRETT R, HUBBARD N J, et al. Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms[C]//Lunar and Planetary Science Conference Proceedings, 1971
    [21]
    ALEXANDER JR E C, BATES A, COSCIO JR M R, et al. K/Ar dating of lunar soils[C]//Lunar and Planetary Science Conference Proceedings, 1976
    [22]
    EBERHARDT P, GEISS J, GRÖGLER N, et al. How old is the crater copernicus[J]. The moon, 1973, 8(1): 104-114
    [23]
    SILVER L T. U-Th-Pb isotope systems in Apollo 11 and 12 regolithic materials and a possible age for the Copernican impact[J]. Eos Transactions AGU, 1971, 52: 534
    [24]
    BOGARD D D, GARRISON D H, SHIH C Y, et al. 39Ar-40Ar dating of two lunar granites: The age of Copernicus[J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 3093-3100 doi: 10.1016/0016-7037(94)90181-3
    [25]
    WENTWORTH S J, MCKAY D S, LINDSTROM D J, et al. Apollo 12 ropy glasses revisited[J]. Meteoritics, 1994, 29(3): 323-333 doi: 10.1111/j.1945-5100.1994.tb00596.x
    [26]
    BARRA F, SWINDLE T D, KOROTEV R L, et al. 40Ar/39Ar dating of Apollo 12 regolith: Implications for the age of Copernicus and the source of nonmare materials[J]. Geochimica et Cosmochimica Acta, 2006, 70(24): 6016-6031 doi: 10.1016/j.gca.2006.09.013
    [27]
    STÖFFLER D, RYDER G, IVANOV B A, et al. Cratering history and Lunar chronology[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1): 519-596 doi: 10.2138/rmg.2006.60.05
    [28]
    NEUKUM G, KÖNIG B. Dating of individual Lunar craters[C]//Lunar and Planetary Science Conference Proceedings, 1976
    [29]
    ARVIDSON R, DROZD R, GUINNESS E, et al. Cosmic ray exposure ages of Apollo 17 samples and the age of Tycho[C]//Lunar and Planetary Science Conference Proceedings, 1976
    [30]
    STÖFFLER D, RYDER G. Stratigraphy and isotope ages of Lunar geologic units: chronological standard for the inner solar system[J]. Space Science Reviews, 2001, 96(1): 9
    [31]
    WERNER S C, MEDVEDEV S. The Lunar rayed-crater population—Characteristics of the spatial distribution and ray retention[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 147-158 doi: 10.1016/j.jpgl.2010.03.036
    [32]
    HIESINGER H, HEAD J W, WOLF U, et al. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum[J]. Journal of Geophysical Research: Planets, 2003. 108(E7).
    [33]
    BERNATOWICZ T, HOHENBERG C M, HUDSON B, et al. Argon ages for imbrium consortium samples 14064 and 15405[C]//Lunar and Planetary Science Conference, 1977
    [34]
    RYDER G, BOGARD D, GARRISON D. Probable age of autolycus and calibration of Lunar stratigraphy[J]. Geology, 1991, 19(2): 143-146 doi: 10.1130/0091-7613(1991)019<0143:PAOAAC>2.3.CO;2
    [35]
    NEUKUM G, KÖNIG B, FECHTIG H, et al. Cratering in the Earth-Moon system–Consequences for age determination by crater counting[C]//Lunar and Planetary Science Conference Proceedings, 1975
    [36]
    MOROTA T, HARUYAMA J, MIYAMOTO H, et al. Formation age of the lunar crater Giordano Bruno[J]. Meteoritics and Planetary Science, 2009, 44(8): 1115-1120
    [37]
    肖智勇, 月球表面哥白尼纪与水星表面柯伊伯纪的地质活动对比研究. 武汉: 中国地质大学(武汉), 2013

    XIAO Zhiyong. Comparison between Copernican-aged Geological Activity on the Moon and Kuiperian-aged Geological Activity on Mercury[D]. Wuhan: China University of Geosciences, 2013
    [38]
    赵健楠, 黄俊, 肖龙, 等. 撞击坑统计定年法及对月球虹湾地区的定年结果[J]. 地球科学: 中国地质大学学报, 2013, 38(2): 351-361

    ZHAO Jiannan, HUANG Jun, XIAO Long, et al. Crater Size-Frequence Distribution Measurements and Age Determination of Sinus Iridum[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(2): 351-361
    [39]
    王梁, 丁孝忠, 韩同林, 等. 月球第谷撞击坑区域数字地质填图及地质地貌特征[J]. 地学前缘, 2015, 22(2): 251-262

    WANG Liang, DING Xiaozhong, HAN Tonglin, et al. The digital geologiacl mapping and geologiacl and geomorphic features of Tycho Crater of the Moon[J]. Earth Science Frontiers, 2015, 22(2): 251-262
    [40]
    丁孝忠, 王梁, 郭弟均, 等. 月球哥白尼纪地层特征与地质演化研究[J]. 岩石学报, 2016, 32(1): 10-18

    DING Xiaozhong, WANG liang, GUO Dijun, et al. Study on geological evolution and stratigraphic features of the Copernican Period of the Moon[J]. Acta Petrologica Sinica, 2016, 32(1): 10-18
    [41]
    付晓辉, 邹永廖, 郑永春, 等. 月球表面太空风化作用及其效应[J]. 空间科学学报, 2011, 31(6): 705-715

    FU Xiaohui, ZOU Yongliao, ZHENG Yongchun, et al. Space weathering processes and effects on the Moon[J]. Chinese Journal of Space Science, 2011, 31(6): 705-715
    [42]
    李阳, 李雄耀, 王世杰, 等. 月壤颗粒微观环带的太空风化成因[J]. 地球科学进展, 2012, 27(6): 603-612

    LI Yang, LI Xiongyao, WANG Shijie, et al. Space weathering origin of microstructure rims of Lunar soil grains[J]. Advances in Earth Science, 2012, 27(6): 603-612
    [43]
    唐红, 李雄耀, 王世杰, 等. 月壤中纳米金属铁的太空风化成因及模拟方法分析[J]. 地球科学进展, 2011, 26: 507-514

    TANG Hong, LI Xiongyao, WANG Shijie, et al. The origin and simulation of nanophase iron in Lunar soil[J]. Advances in Earth Science, 2011, 26: 507-514
    [44]
    SASAKI S, NAKAMURA K, HAMABE Y, et al. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering[J]. Nature, 2001, 410(6828): 555 doi: 10.1038/35069013
    [45]
    STRAZZULLA G, DOTTO E, BINZEL R, et al. Spectral alteration of the meteorite Epinal (H5) induced by heavy ion irradiation: A simulation of space weathering effects on near-Earth asteroids[J]. Icarus, 2005, 174(1): 31-35 doi: 10.1016/j.icarus.2004.09.013
    [46]
    WILLMAN M, JEDICKE R, NESVORNÝ D, et al. Redetermination of the space weathering rate using spectra of Iannini asteroid family members[J]. Icarus, 2008, 195(2): 663-673 doi: 10.1016/j.icarus.2008.02.007
    [47]
    VERNAZZA P, BINZEL R P, ROSSI A, et al. Solar wind as the origin of rapid reddening of asteroid surfaces[J]. Nature, 2009, 458(7241): 993 doi: 10.1038/nature07956
    [48]
    KELLER L P, BERGER E L, CHRISTOFFERSEN R, et al. Direct determination of the space weathering rates in lunar soils and Itokawa regolith from sample analyses[C]//47th Lunar and Planetary Science Conference, 2016
    [49]
    CRADDOCK R A, HOWARD A D. Simulated degradation of lunar impact craters and a new method for age dating farside mare deposits[J]. Journal of Geophysical Research: Planets, 2000, 105(E8): 20387-20401 doi: 10.1029/1999JE001099
    [50]
    FASSETT C I, THOMSON B J. Crater degradation on the lunar maria: topographic diffusion and the rate of erosion on the Moon[J]. Journal of Geophysical Research: Planets, 2014, 119(10): 2255-2271 doi: 10.1002/2014JE004698
    [51]
    POHN H A, OFFIELD T W. Lunar crater morphology and relative-age determination of lunar geologic units—Part 1. Classification[J]. US Geological Survey Professional Paper, 1970: 153-162
    [52]
    SWANN G A, REED V S. A method for estimating the absolute ages of small Copernican craters and its application to the determination of Copernican meteorite flux[C]//Lunar and Planetary Science Conference Proceeding, 1974
    [53]
    TRANG D, GILLIS-DAVIS J J, BOYCE J M. Absolute model ages from lunar crater morphology[J]. Journal of Geophysical Research: Planets, 2015, 120(4): 725-738 doi: 10.1002/2014JE004639
    [54]
    BELL S W, THOMSON B J, DYAR M D, et al. Dating small fresh lunar craters with Mini-RF radar observations of ejecta blankets[J]. Journal of Geophysical Research: Planets, 2012, 117(E12): n/a-n/a
    [55]
    THOMPSON T W, ZISK S H, SHORTHILL R W, et al. Lunar craters with radar bright ejecta[J]. Icarus, 1981, 46(2): 201-225 doi: 10.1016/0019-1035(81)90209-8
    [56]
    GHENT R R, HAYNE P O, BANDFIELD J L, et al. Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages[J]. Geology, 2014, 42(12): 1059-1062 doi: 10.1130/G35926.1
    [57]
    ZANETTI M, HIESINGER H, VAN DER BOGERT C H, et al. Aristarchus crater: Mapping of impact melt and absolute age determination//42nd Lunar and Planetary Science Conference, 2011 (The Woodlands, Texas)
    [58]
    VAN DER BOGERT C H, HIESINGER H, MCEWEN A S, et al. Discrepancies between crater size-frequency distributions on ejecta and impact melt pools at lunar craters: An effect of differing target properties[C]//Lunar and Planetary Science Conference, 2010
    [59]
    ASHLEY J W, ROBINSON M S, HAWKE B R, et al. Geology of the King crater region: New insights into impact melt dynamics on the Moon. Journal of Geophysical Research: Planets, 2012. 117(E12)
    [60]
    EUGSTER O. Chronology of dimict breccias and the age of South Ray crater at the Apollo 16 site[J]. Meteoritics and Planetary Science, 2010, 34(3): 385-391
    [61]
    HIESINGER H, SIMON I, VAN DER BOGERT C H, et al. How old is cone crater at the Apollo 14 landing site//EGU General Assembly Conference Abstracts, 2015
    [62]
    LEMELIN M, LUCEY P G, GADDIS L R, et al. Global Map Products from the Kaguya Multiband Imager at 512 ppd: Minerals, FeO, and OMAT[C]//Lunar and Planetary Science Conference, 2016
    [63]
    SUN L Z, LING Z C, ZHANG J, et al. Lunar iron and optical maturity mapping: Results from partial least squares modeling of Chang'E-1 IIM data[J]. Icarus, 2016, 280: 183-198
    [64]
    ROBINSON M S, et al. New crater on the Moon and a swarm of secondaries[J]. Icarus, 2015, 252: 229-235 doi: 10.1016/j.icarus.2015.01.019
    [65]
    SPEYERER E J, POVILAITIS R Z, ROBINSON M S, et al. Quantifying crater production and regolith overturn on the Moon with temporal imaging[J]. Nature, 2016. 538(7624): 215
    [66]
    ELLIOTT J R, HUANG Y H, MINTON D A, et al. The length of lunar crater rays explained using secondary crater scaling[J]. Icarus, 2018, 312: 231-246 doi: 10.1016/j.icarus.2018.04.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article Views(699) PDF Downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return