Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHANG Sicong, CHENG Wei, WANG Chengzhi, LI Huijun. Computer-aided Chemical Kinetic Modeling in Near Space (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 91-102.  DOI: 10.11728/cjss2022.01.201019094
Citation: ZHANG Sicong, CHENG Wei, WANG Chengzhi, LI Huijun. Computer-aided Chemical Kinetic Modeling in Near Space (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 91-102.  DOI: 10.11728/cjss2022.01.201019094

Computer-aided Chemical Kinetic Modeling in Near Space

doi: 10.11728/cjss2022.01.201019094 cstr: 32142.14.cjss2022.01.201019094
  • Received Date: 2020-10-19
  • Accepted Date: 2021-06-01
  • Rev Recd Date: 2021-10-04
  • Available Online: 2022-05-25
  • As the typical processes in stratospheric photochemical reactions, four systems with different complicities in mass balance equations are selected as the bench mark cases, to show the efficiency and convenience for application of the Chemical Kinetics Preprocess (KPP) tool in Near Space chemical modelings. Focusing on the large rigid ODE equations in the model, six different numerical calculation schemes are selected (rodas, ros3, ros4, rosenbrock, sdirk, seulex), to realize the discrete representation of ODE equations, and automatically generate the required calculation code. On this basis, the numerical simulation experiments of stratospheric photochemical processes are carried out, focusing on: (i) the computational efficiency and stability of the numerical calculation schemes; (ii) the evolution of main chemical components of each system with time; (iii) the influence of the complexity of the photochemical system on the changes of the main components of each model. Simulation results show that the KPP tool can effectively cope with the increase of the complexity of atmospheric chemical reaction system in adjacent space, shorten the modeling and testing period of atmospheric chemical model, and provide effective technical support for the research of the atmospheric chemical process in adjacent space.

     

  • loading
  • [1]
    BRASSEUR G P, SOLOMON SUSAN. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere[M]. Dordrecht: Springer Netherlands, 2005: 25-32
    [2]
    REES M H. Physics and Chemistry of the Upper Atmosphere[M]. Cambridge: Cambridge University Press, 1989: 49-64
    [3]
    马鹏里, 张强, 杨兴国, 等. 大气化学研究进展—臭氧、气溶胶研究综述[J]. 干旱气象, 2003(4): 66-70

    MA Pengli, ZHANG Qiang, YANG Xingguo, et al. Research progress of atmospheric chemistry- review of ozone and aerosol research[J]. Dry Meteorology, 2003(4): 66-70
    [4]
    王明星. 大气化学[M]. 北京: 气象出版社, 1999: 10-13

    WANG Mingxing. Atmospheric Chemistry[M]. Beijng: Meteorological Press, 1999: 10-13
    [5]
    肖存英. 临近空间大气动力学特性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2009

    XIAO Cunying. Study on Atmospheric Dynamics in Near Space[D]. Beijing: Graduate School of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2009
    [6]
    王振亚, 李海洋, 周士康. 平流层中臭氧耗减化学研究进展[J]. 科学通报, 2001, 46(8): 619-625 doi: 10.3321/j.issn:0023-074X.2001.08.002

    WANG Zhenya, LI Haiyang, ZHOU Shikang. Advances in ozone depletion chemistry in the stratosphere[J]. Science Bulletin, 2001, 46(8): 619-625 doi: 10.3321/j.issn:0023-074X.2001.08.002
    [7]
    徐晓斌, 葛宝珠, 林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(008): 845-853

    XU Xiaobin, GE Baozhu, LIN Weili. Progress in the research of Ozone Production Efficiency (OPE)[J]. Advances in Geoscience, 2009, 24(008): 845-853
    [8]
    贾龙, 葛茂发, 徐永福, 等. 大气臭氧化学研究进展[J]. 化学进展, 2006, 018(011): 1565-1574

    JIA Long, GE Maofa, XU Yongfu, et al. Advances in atmospheric ozone chemistry[J]. Chemical Progress, 2006, 018(011): 1565-1574
    [9]
    刘春红, 杨培才, 曾庆存. 平流层臭氧均相光化学系统的非线性特性——对Clx和NOx排放强度变化的响应[J]. 中国科学(D辑:地球科学), 1997(05): 475-480

    LIU Chunhong, YANG Peicai, ZENG Qingcun. Nonlinear characteristics of stratospheric ozone homogeneous photochemical system-response to Clx and NOx emission intensity changes[J]. hinese Science (part D:Geoscience), 1997(05): 475-480
    [10]
    范志强. 临近空间大气环境探测资料分析研究[D]. 长沙: 国防科技大学, 2018

    FAN Zhiqiang. Analysis and Study of Atmospheric Environment Detection Data in Near Space[D]. Changsha: University of National Defense Science and Technology, 2018
    [11]
    CHAPMAN S A. Theory of upper atmospheric ozone[J]. Memoirs of The Royal Meteorological Society, 1930, 3: 103-125
    [12]
    BRASSEUR G P, JACOB D J. Modeling of Atmospheric Chemistry[M]. Cambridge : Cambridge University Press, 2017: 34-45
    [13]
    DESMOND J H. Modeling and Simulating Chemical Reactions[M]. New York: Society for Industrial and Applied Mathematics, 2008
    [14]
    NICHOLAS J H. The Princeton Companion to Applied Mathmatics[M]. Princeton: Princeton University Press, 2015
    [15]
    田文寿, 张敏, 舒建川. 中层大气模式的应用及发展前景[J]. 地球科学进展, 2009, 24(03): 252-261 doi: 10.3321/j.issn:1001-8166.2009.03.004

    TIAN Wenshou, ZHANG Min, SHU Jianchuan. Application and development prospect of mesosphere model[J]. Advances in Geoscience, 2009, 24(03): 252-261 doi: 10.3321/j.issn:1001-8166.2009.03.004
    [16]
    毕云. 平流层水汽与甲烷的分布和变化及其气候效应的研究[D]. 合肥: 中国科学技术大学, 2009

    BI Yun. Study on the Distribution and Variation of Stratospheric Water Vapor and Methane and Their Climatic Effects[D]. Hefei: University of Science and Technology of China, 2009
    [17]
    潘晨. 利用WACCM4模式对平流层大气组成的模拟研究[D]. 南京: 南京信息工程大学, 2013

    PAN Chen. Simulation of Stratospheric Atmospheric Composition Using WACCM4 Model[D]. Nanjing: Nanjing University of Information Engineering, 2013
    [18]
    潘晨, 朱彬, 施春华, 等. SD-WACCM模式对平流层化学组分的模拟研究[J]. 气象科学, 2015, 35(01): 9-16

    PAN Chen, ZHU Bin, SHI Chunhua, et al. Simulation study of stratospheric chemical composition by SD-WACCM model[J]. Meteorological Sciences, 2015, 35(01): 9-16
    [19]
    刘宁微, 马建中, 伍湘君, 等. 两个模式对平流层温度模拟的比较与分析[J]. 大气科学学报, 2017, 40(06): 721-728

    LIU Ningwei, MA Jianzhong, WU Xiangjun, et al. Comparison and analysis of two models for stratospheric temperature simulation[J]. Journal of atmospheric science, 2017, 40(06): 721-728
    [20]
    徐寄遥, 马瑞平, SMITH A K. 光化-动力耦合重力波模式及其应用——Ⅰ. 模式的建立[J]. 中国科学(A辑), 2001(S1): 142-148

    XU Jiyao, MA Ruiping, SMITH A K. Photochemical-dynamic coupled gravity wave model and its application- I. The establishment of the model[J]. Chinese Science (Series A), 2001(S1): 142-148
    [21]
    徐寄遥, 马瑞平, SMITH A K. 光化-动力耦合重力波模式及其应用——Ⅱ. 稳定传播的重力波对中层顶区化学成分分布的影响[J]. 中国科学(A辑), 2001(S1): 149-156

    XU Jiyao, MA Ruiping, SMITH A K. Photochemical-dynamic coupled gravity wave model and its application- Ⅱ. Effect of stably propagating gravity waves on chemical composition distribution in the mesopause region[J]. Chinese Science (Series A), 2001(S1): 149-156
    [22]
    王体健, 李宗恺. 不同方案求解非线性化学动力学方程组的比较[J]. 应用气象学报, 1996, 7(04): 466-472

    WANG Tijian, LI Zongkai. Comparison of different schemes for solving nonlinear chemical kinetic equations[J]. Journal of Applied Meteorology, 1996, 7(04): 466-472
    [23]
    王体健, 孙照渤. 一种非线性大气化学动力学方程组的新算法[J]. 南京气象学院学报, 1998, 021(003): 398-404

    WANG Shijian, SUN Zhaobo. A new algorithm for nonlinear atmospheric chemical kinetic equations[J]. Journal of Nanjing Institute of Meteorology, 1998, 021(003): 398-404
    [24]
    张欣, 王体健, 沈凡卉, 等. 非线性大气化学动力学方程组数值解法的比较[J]. 气象科学, 2010, 30(04): 427-437 doi: 10.3969/j.issn.1009-0827.2010.04.001

    ZHANG Xin, WANG Tijian, SHEN Fanhui, et al. Comparison of numerical solutions of nonlinear atmospheric chemical kinetic equations[J]. Meteorological Sciences, 2010, 30(04): 427-437 doi: 10.3969/j.issn.1009-0827.2010.04.001
    [25]
    芮守娟. 关中地区臭氧浓度变化特征及其形成过程的数值模拟[D]. 西安: 长安大学, 2019

    RUI Shoujuan. Numerical Simulation of Ozone Concentration Change and Its Formation Process in Guanzhong Area[D]. Xian: Chang'an University, 2019
    [26]
    DAMIAN-IORDACHE V. KPP-Chemistry Simulation Development Environment[D]. Iowa: The University of Iowa, 1996
    [27]
    DAMIAN V, SANDU A, DAMIAN M, et al. The kinetic preprocessor KPP-a software environment for solving chemical kinetics[J]. Computers & Chemical Engineering, 2002, 26(11): 1567-1579
    [28]
    SANDU A, VERWER J G, BLOM J G, et al. Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers[J]. Atmospheric Environment, 1997, 31(20): 3459-3472 doi: 10.1016/S1352-2310(97)83212-8
    [29]
    楼晟荣. 大气环境中OH自由基反应活性的检测技术[D]. 上海: 上海交通大学, 2012

    LOU Shengrong. Detection of Reaction Activity of OH Free Radicals in Atmospheric Environment[D]. Shanghai: Shanghai Jiaotong University, 2012
    [30]
    林秀, 王智民, 韩基新. 大气中臭氧的存在形式及环保对策[J]. 黑龙江大学自然科学学报, 2003(03): 118-122 doi: 10.3969/j.issn.1001-7011.2003.03.029

    LIN Xiu, WANG Zhimin, HAN Jixin. The existing forms of ozone in the atmosphere and environmental protection countermeasures[J]. Journal of Natural Science of Heilongjiang University, 2003(03): 118-122 doi: 10.3969/j.issn.1001-7011.2003.03.029
    [31]
    HWANG D Y, MEBEL A M. Ab initio study on the reaction mechanism of ozone with the chlorine atom[J]. Journal of Chemical Physics, 1998, 109(24): 10847-10852 doi: 10.1063/1.477781
    [32]
    WOFSY S C, MCELROY M B, YUNG Y L. The chemistry of atmospheric bromine[J]. Geophysical Research Letters, 2013, 2(6): 215-218
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article Views(674) PDF Downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return