Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
REN Ganming, CAO Jinbin, MA Yuduan. Response of Substorm Onset Location and Expansion Phase Duration to Interplanetary Magnetic Field Bz (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 44-50.  DOI: 10.11728/cjss2022.01.201112099
Citation: REN Ganming, CAO Jinbin, MA Yuduan. Response of Substorm Onset Location and Expansion Phase Duration to Interplanetary Magnetic Field Bz (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 44-50.  DOI: 10.11728/cjss2022.01.201112099

Response of Substorm Onset Location and Expansion Phase Duration to Interplanetary Magnetic Field Bz

doi: 10.11728/cjss2022.01.201112099
  • Received Date: 2020-11-12
  • Accepted Date: 2020-12-01
  • Rev Recd Date: 2021-07-31
  • Available Online: 2022-05-25
  • A magnetospheric substorm is a significant process in solar wind-magnetosphere- ionosphere coupling. Substorm onset locations have a great dependence of solar wind parameters. Based on 4193 auroral breakup events identified by Frey et al. from about 5 years IMAGE FUV data, we statistically study the distribution of substorm onset locations and substorm expansion duration time under different Interplanetary Magnetic Field (IMF) conditions in southern and northern hemispheres. It is found that the occurrence rate of a substorm is relatively bigger under southward IMF than northward IMF. The maximum value of substorm AE index is above 600 nT under southward IMF, and increases with the evolution of southward IMF lasting time. While the maximum value of substorm AE index is beneath 500 nT under northward IMF, and decreases with the evolution of northward IMF lasting time. The substorm onset magnetic latitude is around 65°-70°. With the lasting time of northward/southward IMF exceeding 80 minutes, the substorm onset magnetic latitude in the northern hemisphere lower with the evolution of IMF lasting time. The substorm onset is around 22:15-23:15 MLT. It’s irregular under different IMF lasting time. The average expansion time of substorm is about 10 minutes larger under northward IMF than southward IMF. It indicates that the speed of substorm energy release and dissipation is faster under southward IMF with intense substorms.

     

  • loading
  • [1]
    AXFORD I W. Magnetospheric convection[J]. Reviews of Geophysics, 1969, 7 (1/2). DOI: 10.1029/rg007i001p00421
    [2]
    LI H, WANG C, PENG Z, et al. Solar wind impacts on growth phase duration and substorm intensity: a statistical approach[J]. Journal of Geophysical Research Space Physics, 2013, 118 doi: 10.1002/jgra.50399
    [3]
    VORONKOV O I. Observations of the phases of the substorm[J]. Journal of Geophysical Research, 2003, 108(A2). DOI: 10.1029/2002 JA009314
    [4]
    PARTAMIES N, JUUSOLA L, TANSKANEN E, et al. Statistical properties of substorms during different storm and solar cycle phases[J]. Annales Geophysicae, 2013, 31(2): 349-358 doi: 10.5194/angeo-31-349-2013
    [5]
    MCPHERRON R L. Growth phase of magnetospheric substorms[J]. Journal of Geophysical Research, 1970, 75(28). DOI: 10.1029/JA075 i028 p05592
    [6]
    MCPHERRON R L, RUSSELL C T, AUBRY M P. Satellite studies of magnetospheric substorms on August 15, 1968: 1. State of the magnetosphere[J]. Journal of Geophysical Research, 1973, 78(16): 3044-3053 doi: 10.1029/ja078i016p03131
    [7]
    LIOU K, NEWELL P T, SIBECK D G, et al. Observation of IMF and seasonal effects in the location of auroral substorm onset[J]. Journal of Geophysical Research Space Physics, 2001, 106(A4): 5799 doi: 10.1029/2000JA003001
    [8]
    FREY H U, MENDE S B, ANGELOPOULOS V. Substorm onset observations by IMAGE-FUV[J]. Journal of Geophysical Research Space Physics, 2004. DOI: 10.1029/2004JA010607
    [9]
    NISHIMURA Y, LYONS L, ZOU S, et al. Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations[J]. Journal of Geophysical Research Space Physics, 2010. DOI: 10.1029/2009 ja015166
    [10]
    NEWELL P T, GJERLOEV J W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power[J]. Journal of Geophysical Research Space Physics, 2011, 116(A12). DOI: 10.1029/2011JA016779
    [11]
    CRAVEN J D, FRANK L A. Diagnosis of auroral dynamics using global auroral imaging with emphasis on large-scale evolutions [R]. Iowa: Department of Physics and Astronomy, Iowa University, 1989
    [12]
    ØSTGAARD N. Interplanetary magnetic field control of the location of substorm onset and auroral features in the conjugate hemispheres[J]. Journal of Geophysical Research, 2004, 109(A7). DOI: 10.1029/2003 JA010370
    [13]
    WANG H, LUEHR H, MA S Y, et al. Interhemispheric comparison of average substorm onset locations: evidence for deviation from conjugacy[J]. Annales Geophysicae, 2007, 25(4). DOI: 10.5194/angeo-25-989-2007
    [14]
    ØSTGAARD N, TSYGANENKO N A, MENDE S B, et al. Observations and model predictions of substorm auroral asymmetries in the conjugate hemispheres[J]. Geophysical Research Letters, 2005, 32(5): 347-354 doi: 10.1029/2004gl022166
    [15]
    ØSTGAARD N, MENDE S B, FREY H U, et al. Auroral conjugacy studies based on global imaging[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(3): 249-255 doi: 10.1016/j.jastp.2006.05.026
    [16]
    Liou K, Newell P T. On the azimuthal location of auroral breakup: Hemispheric asymmetry[J]. Geophysical Research Letters, 2010, 37(23): 817-824 doi: 10.1029/2010GL045537
    [17]
    ØSTGAARD N, LAUNDAL K M, JUUSOLA L, et al. Interhemispherical asymmetry of substorm onset locations and the interplanetary magnetic field[J]. Geophysical Research Letters, 2011, 38 (8). DOI: 10.1029/2011 GL046767
    [18]
    FREY H U, MENDE S B. Substorm onsets as observed by IMAGE-FUV[C]//The 8 th International Conference on Substorms. Calgary: University of Calgary, 2006: 71-76
    [19]
    MENG C I, TSURUTANI B, KAWASAKI K, et al. Cross-correlation analysis of the AE index and the interplanetary magnetic field B z component[J]. Journal of Geophysical Research Atmospheres, 1973, 78(4): 617-629 doi: 10.1029/JA078i004p00617
    [20]
    Arnoldy R L. Signature in the interplanetary medium for substorms[J]. Journal of Geophysical Research, 1971, 76(22): 5189-5201 doi: 10.1029/JA076i022p05189
    [21]
    ROSTOKER G, LAM H L, HUME W D. Response Time of the Magnetosphere to the Interplanetary Electric Field[J]. Canadian Journal of Physics, 1972, 50(6): 544-547 doi: 10.1139/p72-073
    [22]
    NISHIDA A. Interplanetary origin of electric fields in the magnetosphere[J]. Cosmic Electrodynamics, 1971, 2: 350-74
    [23]
    AKASOFU S I, PERREAULT P D, YASUHARA F, et al. Auroral substorms and the interplanetary magnetic field[J]. Journal of Geophysical Research, 1973, 78(31): 7490-7508 doi: 10.1029/JA078i031p07490
    [24]
    PETRUKOVICH A A, BAUMJOHANN W, NAKAMURA R, et al. Small substorms: Solar wind input and magnetotail dynamics[J]. Journal of Geophysical Research Space Physics, 2000, 105(A9): 21109-21117 doi: 10.1029/2000ja900057
    [25]
    LUI A T Y, AKASOFU S I, HONES E W, et al. Observation of the plasma sheet during a contracted oval substorm in a prolonged quiet period[J]. Journal of Geophysical Research, 1976, 81(7): 1415-1419 doi: 10.1029/JA081i007p01415
    [26]
    KAMIDE Y, PERREAULT P D, AKASOFU S I, et al. Dependence of substorm occurrence probability on the interplanetary magnetic field and on the size of the auroral oval[J]. Journal of Geophysical Research, 1977, 82(35): 5521-5528 doi: 10.1029/JA082i035p05521
    [27]
    BAKER D N, PULKKINEN T I, ANGELOPOULOS V, et al. Neutral line model of substorms: Past results and present view[J]. Journal of Geophysical Research Space Physics, 1996, 101(A6): 12975-13010 doi: 10.1029/95JA03753
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article Views(258) PDF Downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return