Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LIU Chang, SHEN Fang, LIU Yousheng. Three-dimensional Numerical Simulation of Coronal Solar Wind (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 25-33.  DOI: 10.11728/cjss2022.01.201127102
Citation: LIU Chang, SHEN Fang, LIU Yousheng. Three-dimensional Numerical Simulation of Coronal Solar Wind (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 25-33.  DOI: 10.11728/cjss2022.01.201127102

Three-dimensional Numerical Simulation of Coronal Solar Wind

doi: 10.11728/cjss2022.01.201127102
  • Received Date: 2020-11-27
  • Accepted Date: 2021-04-12
  • Rev Recd Date: 2021-09-07
  • Available Online: 2022-05-25
  • The Coronal Interplanetary-Total Variation Diminishing (COIN-TVD) magnetohydrodynamic (MHD) model developed in recent years that can effectively realize the coronal-interplanetary three-dimensional (3D) solar wind simulation. In this paper, the 3D coronal solar wind is studied by using this model. In order to simulate the heating and acceleration of solar wind in coronal region, the volume heating term in the model is improved. For MHD simulations, one of the key problems is to remove the magnetic field divergence error. Then, the influence of different methods to reduce the magnetic field divergence error on the coronal solar wind structure is discussed. The background solar wind of CR2199 is simulated by the diffusive method, Powell method, Diffusive and Powell method. The simulation results are consistent with the features of the coronal solar wind. The Diffusive and Powell method can control the relative magnetic field divergence error at the order of 10–9.

     

  • loading
  • [1]
    魏奉思. “数字空间”是空间科技战略新高地[J]. 河南科技, 2016(19): 7

    WEI Fengsi. "Digital space" is a new strategic in space science and technology[J]. Henan Science and Technology 2016(19): 7
    [2]
    HAKAMADA K, AKASOFU S I. Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms[J]. Space Science Reviews, 1982, 31(1): 3-70 doi: 10.1007/BF00349000
    [3]
    TOTH G, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework: a new tool for the space science community[J]. Journal of Geophysical Research: Space Physics, 2005, 110: A12226 doi: 10.1029/2005JA011126
    [4]
    SMITH Z K, DETMAN T R, SUN W, et al. Modeling the arrival at earth of the interplanetary shock following the 12 may 1997 solar event using HAFV2 and 3-d MHD HHMS models[J]. Space Weather, 2007, 6: S05006
    [5]
    LINKER J A, RILEY P, MIKIC Z, et al. CORHEL MHD Modeling in Support of Solar Dynamics Observatory[M]. Miami: American Astronomical Society, 2010
    [6]
    FENG X S, YANG L P, XIANG C Q, et al. Three-dimensional solar wind modeling from the sun to earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophysical Journal, 2010, 723(1): 300 doi: 10.1088/0004-637X/723/1/300
    [7]
    冯学尚, WU S T, 范全林, 等. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4): 300-308 doi: 10.3969/j.issn.0254-6124.2002.04.002

    FENG Xueshang, WU S T, FAN Quanlin, et al. A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation[J]. Chinese Journal of Space Science, 2002, 22(4): 300-308 doi: 10.3969/j.issn.0254-6124.2002.04.002
    [8]
    FENG X S, WU S T, WEI F S, et al. A class of TVD type combined numerical scheme for MHD equations with a survey about numerical methods in solar wind simulations[J]. Space Science Reviews, 2003, 107(1/2): 43-53
    [9]
    冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学:地球科学, 2011, 41(001): 1-28 doi: 10.1360/zd-2011-41-1-1

    FENG Xueshang, XIANG Changqing, ZHONG Dingkun. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms[J]. Scientia Sinica Terrae, 2011, 41(001): 1-28 doi: 10.1360/zd-2011-41-1-1
    [10]
    SHEN F, FENG X S, WU S T, et al. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event[J]. Journal of Geophysical Research: Space Physics, 2007, 112: A06109
    [11]
    SHEN Fang, FENG XueShang, SONG WenBin. An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind[J]. Scientia Sinica Technologica, 2009, 52(10): 2895-2902
    [12]
    SHEN F, FENG X S, WANG Y, et al. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model[J]. Journal of Geophysical Research: Space Physics, 2011, 116: A09103
    [13]
    SHEN F, FENG X S, WU S T, et al. Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model[J]. Journal of Geophysical Research (Space Physics), 2011, 116: A04102
    [14]
    SHEN F, WU S T, FENG X, et al. Acceleration and deceleration of coronal mass ejections during propagation and interaction[J]. Journal of Geophysical Research: Space Physics, 2012, 117: A11101
    [15]
    SHEN Fang, SHEN Chenlong, WANG Yuming, et al. Could the collision of CMEs in the heliosphere be super elastic. Validation through three dimensional simulations[J]. Geophysical Research Letters, 2013, 40: 1457-1461 doi: 10.1002/grl.50336
    [16]
    SHEN Fang, SHEN Chenlong, ZHANG Jie, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth: data-constrained three-dimensional MHD simulations[J]. Journal of Geophysical Research: Space Physics, 2014, 119: 7128-7141 doi: 10.1002/2014JA020365
    [17]
    POWELLK G. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. Journal of Computational Physics, 1999, 154(2): 284-309 doi: 10.1006/jcph.1999.6299
    [18]
    JANHUNEN P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J]. Journal of Computational Physics, 2000, 160: 649-661 doi: 10.1006/jcph.2000.6479
    [19]
    YEE H C, SJOEGREEN B. Efficient low dissipative high order schemes for multiscale MHD flows, II: minimization of ∇· B numerical error[J]. Journal of Scientific Computing, 2006, 29: 115-164 doi: 10.1007/s10915-005-9004-5
    [20]
    DEDNER A, KEMM F, Kröner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. Journal of Computational Physics, 2002, 175: 645-673 doi: 10.1006/jcph.2001.6961
    [21]
    TÓTH G. The ∇⋅B = 0 Constraint in shock-capturing magnetohydrodynamics codes[J]. Journal of Computational Physics, 2000, 161: 605-652
    [22]
    EVANS C R, HAWLEY J F. Simulation of magnetohydrodynamic flows: a constrained transport method[J]. Astrophysical Journal, 2007, 332(2): 659-677
    [23]
    DAI W, WOODWARD P R. A simple finite difference scheme for multidimensional magnetohydrodynamical equation[J]. Journal of Computational Physics, 1998, 142: 331-369 doi: 10.1006/jcph.1998.5944
    [24]
    HOPKINS P F. A constrained-gradient method to control divergence errors in numerical MHD[J]. Monthly Notices of the Royal Astronomical Society, 2016, 462: 576-587
    [25]
    SERNA S. A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations[J]. Journal of Computational Physics, 2009, 228(11): 4232-4247 doi: 10.1016/j.jcp.2009.03.001
    [26]
    FENG X S, LIU X J, XIANG C Q, et al. A new MHD model with a rotated-hybrid scheme and solenoidality-preserving approach[J]. The Astrophysical Journal, 2019, 871(2): 226 doi: 10.3847/1538-4357/aafacf
    [27]
    刘元昕, 纪珍, 冯学尚, 等. 电阻磁流体力学模拟的CESE方法[J]. 空间科学学报, 2010, 30(003): 211-220

    LIU Yuanxin, JI Zhen, FENG Xueshang, et al. CESE method for resistive magnetohynamics[J]. Chinese Journal of Space Science, 2010, 30(003): 211-220
    [28]
    ZHANG M, FENG X S. A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation[J]. Frontiers in Astronomy and Space Sciences, 2016, 3
    [29]
    YANG Z C, SHEN F, YANG Y, et al. Three-dimensional MHD simulation of interplanetary solar wind[J]. Chinese Journal of Geophysics, 2018, 20: 2127
    [30]
    NAKAMIZO A, TANAKA T, KUBO Y, et al. Development of the 3‐D MHD model of the solar corona‐solar wind combining system[J]. Journal of Geophysical Research Space Physics, 2009, 114(A7): 109
    [31]
    FENG X S, ZHANG S H, XIANG C Q, et al. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid[J]. Astrophysical Journal, 2011, 734(1): 50 doi: 10.1088/0004-637X/734/1/50
    [32]
    ZHOU Y F, FENG X S, WU S T, et al. Using a 3‐D spherical plasmoid to interpret the Sun‐to‐Earth propagation of the 4 November 1997 coronal mass ejection event[J]. Journal of Geophysical Research Atmospheres, 2012, 117(A1): 102
    [33]
    杨子才, 沈芳, 杨易, 冯学尚. WSA太阳风经验模型及其应用[J]. 空间科学学报, 2018, 38(03): 285-285

    YANG Zicai, SHEN Fang, YANG Yi, et al. Analysis of present research on the WSA solar wind model[J]. Chinese Journal of Space Science, 2018, 38(03): 285-285
    [34]
    杨子才. 行星际背景太阳风的三维磁流体力学数值模拟[D]. 北京: 中国科学院研究生院. 2018

    YANG Zicai. Numerical Simulation of Three-Dimensional Magnetorheological Simulation of Solar Wind in Interplanetary Background[D]. Beijing: The University of Chinese Academy of Sciences, 2018
    [35]
    杨利平. 背景太阳风的三维数值模拟研究[D]. 北京: 中国科学院研究生院, 2011

    YANG Liping. Background Study on 3D Numerical Simulation of Solar Wind[D]. Beijing: The University of Chinese Academy of Sciences, 2011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(461) PDF Downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return