Volume 42 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
ZHAO Dongdong, ZHU Zhiqiang, LIU Qiusheng, QIN Jun, TAO Yuequn. Experimental Investigation of Large Sessile Droplet Evaporation with Pinned Triple Line (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 264-269. DOI: 10.11728/cjss2022.02.210123035
Citation: ZHAO Dongdong, ZHU Zhiqiang, LIU Qiusheng, QIN Jun, TAO Yuequn. Experimental Investigation of Large Sessile Droplet Evaporation with Pinned Triple Line (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 264-269. DOI: 10.11728/cjss2022.02.210123035

Experimental Investigation of Large Sessile Droplet Evaporation with Pinned Triple Line

doi: 10.11728/cjss2022.02.210123035
  • Received Date: 2021-03-22
  • Accepted Date: 2021-05-11
  • Rev Recd Date: 2021-12-30
  • Available Online: 2022-05-25
  • The in-depth study on the evaporation of large sessile liquid droplets has important scientific significance and engineering application value. Using the evaporation-convection box in SJ-10 scientific experimental satellite, the scientific matching experiments of large sessile ethanol droplets evaporation on heated PTFE are conducted on the ground, in which the triple line of the liquid droplet is pinned and the contact radius is greater than capillary length. In present experiments, it is found that the volume of the large sessile droplet with pinned triple decreases linearly with time, but the CCA mode during evaporation is not observed. The average evaporation rate is also focused on, and it is found to be independent on initial volume of the large sessile pinned droplet with the same contact radius, which is similar in the tendency for small evaporating liquid drop, indicating that evaporation occurs most violently near the triple line. The instant evaporation rate is observed to increase firstly and then keep stable until the end of the lifetime. Comparisons between the present experimental results and the results predicted by the empirical models are also performed. It is deduced that the diffusion-limited evaporation model is appropriate for the small droplet, but underestimates evaporation rate of the large sessile pinned liquid droplet, while the accuracy of an empirical model considering both diffusion and natural convection depends on the experimental working medium.

     

  • loading
  • [1]
    FANG X H, LI B Q, PETERSEN E, et al. Drying of DNA droplets[J]. Langmuir, 2006, 22(14): 6308-6312 doi: 10.1021/la060479u
    [2]
    LI W B, LAN D, WANG Y R. Exploration of Direct-Ink-Write 3D printing in space: droplet dynamics and patterns formation in microgravity[J]. Microgravity Science and Technology, 2020, 32(5): 935-940 doi: 10.1007/s12217-020-09820-0
    [3]
    LI W B, JI W J, SUN H H, et al. Pattern formation in drying sessile and pendant droplet: interactions of gravity settling, interface shrinkage, and capillary flow[J]. Langmuir, 2019, 35(1): 113-119 doi: 10.1021/acs.langmuir.8b02659
    [4]
    CHEN C T, Zhang Z H. Low-pressure droplet-evaporation deposition forming transparent conductive films of graphene and poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate[J]. Thin Solid Films, 2021, 719: 138493 doi: 10.1016/j.tsf.2020.138493
    [5]
    CUMMINGS J, LOWENGRUB J, SUMPTER B G, et al. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures[J]. Soft Matter, 2018, 14(10): 1833-1846 doi: 10.1039/C7SM02560B
    [6]
    SHUKLA P, JAGDHARI T, FUGARO A P, et al. Characterizing hygroscopic materials via droplet evaporation[J]. Langmuir, 2020, 36(8): 1871-1877 doi: 10.1021/acs.langmuir.9b02840
    [7]
    BOURGES-MONNIER C, SHANAHAN M E R. Influence of evaporation on contact angle[J]. Langmuir, 1995, 11(7): 2820-2829 doi: 10.1021/la00007a076
    [8]
    LEE C Y, ZHANG B J, PARK J, et al. Water droplet evaporation on Cu-based hydrophobic surfaces with nano- and micro-structures[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2151-2159
    [9]
    BIRDI K S, VU D T. Wettability and the evaporation rates of fluids from solid surfaces[J]. Journal of Adhesion Science and Technology, 1993, 7(6): 485-493 doi: 10.1163/156856193X00808
    [10]
    ROWAN S M, MCHALE G, NEWTON M I, et al. Evaporation of microdroplets of three alcohols[J]. The Journal of Physical Chemistry B, 1997, 101(8): 1265-1267 doi: 10.1021/jp962795v
    [11]
    GELDERBLOM H, MARÍN Á G, NAIR H, et al. How water droplets evaporate on a superhydrophobic substrate[J]. Physical Review E, 2011, 83(2): 026306 doi: 10.1103/PhysRevE.83.026306
    [12]
    HU H, LARSON R G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344 doi: 10.1021/jp0118322
    [13]
    KELLY-ZION P L, PURSELL C J, VAIDYA S, et al. Evaporation of sessile drops under combined diffusion and natural convection[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 381(1/2/3): 31-36
    [14]
    CARLE F, SOBAC B, BRUTIN D. Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation[J]. Applied Physics Letters, 2013, 102(6): 061603 doi: 10.1063/1.4792058
    [15]
    CARLE F, SEMENOV S, MEDALE M, et al. Contribution of convective transport to evaporation of sessile droplets: empirical model[J]. International Journal of Thermal Sciences, 2016, 101: 35-47 doi: 10.1016/j.ijthermalsci.2015.10.012
    [16]
    CHEN X, ZHU Z Q, LIU Q S, et al. Thermodynamic behaviors of macroscopic liquid droplets evaporation from heated substrates[J]. Microgravity Science and Technology, 2015, 27(5): 353-360 doi: 10.1007/s12217-015-9426-0
    [17]
    徐国峰, 朱志强, 刘秋生, 等. 实践十号卫星蒸发对流箱地面科学实验结果分析[J]. 空间科学学报, 2016, 36(4): 508-512 doi: 10.11728/cjss2016.04.508

    XU Guofeng, ZHU Zhiqiang, LIU Qiusheng, et al. Analyses on ground-based results of evaporation-convection box experiment prepared for SJ-10 satellite[J]. Chinese Journal of Space Science, 2016, 36(4): 508-512 doi: 10.11728/cjss2016.04.508
    [18]
    周晓波, 于强, 蔡世界. 空间液滴蒸发实验中液滴图像的无损压缩算法[J]. 空间科学学报, 2010, 30(3): 283-288 doi: 10.11728/cjss2010.03.283

    ZHOU Xiaobo, YU Qiang, CAI Shijie. Lossless compression algorithm for droplet images in space droplet evaporation experiment[J]. Chinese Journal of Space Science, 2010, 30(3): 283-288 doi: 10.11728/cjss2010.03.283
    [19]
    宁乔, 朱志强, 吕旭涛, 等. 图像法求液滴表面张力和接触角[J]. 空间科学学报, 2008, 28(1): 74-79 doi: 10.11728/cjss2008.01.074

    NING Qiao, ZHU Zhiqiang, LV Xutao, et al. Determine the surface tension and contact angle of drop by image processing method[J]. Chinese Journal of Space Science, 2008, 28(1): 74-79 doi: 10.11728/cjss2008.01.074
    [20]
    于强, 宁乔, 朱志强, 等. 蒸发液滴空间实验研究的图像反馈控制系统[J]. 空间科学学报, 2008, 28(1): 64-68 doi: 10.11728/cjss2008.01.064

    YU Qiang, NING Qiao, ZHU Zhiqiang, et al. Image feedback control system in the space drop evaporation experiment[J]. Chinese Journal of Space Science, 2008, 28(1): 64-68 doi: 10.11728/cjss2008.01.064
    [21]
    SHANAHAN M E R, SEFIANE K, MOFFAT J R. Dependence of volatile droplet lifetime on the hydrophobicity of the substrate[J]. Langmuir, 2011, 27(8): 4572-4577 doi: 10.1021/la200437s
    [22]
    STAUBER J M, WILSON S K, DUFFY B R, et al. On the lifetimes of evaporating droplets[J]. Journal of Fluid Mechanics, 2014, 744: R2 doi: 10.1017/jfm.2014.94
    [23]
    SEFIANE K, WILSON S K, DAVID S, et al. On the effect of the atmosphere on the evaporation of sessile droplets of water[J]. Physics of Fluids, 2009, 21(6): 062101 doi: 10.1063/1.3131062
    [24]
    MAATAR A, CHIKH S, SAADA M A, et al. Transient effects on sessile droplet evaporation of volatile liquids[J]. International Journal of Heat and Mass Transfer, 2015, 86: 212-220 doi: 10.1016/j.ijheatmasstransfer.2015.02.077
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article Views(300) PDF Downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return