Volume 42 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
LU Guang, WANG Bing, CHEN Yao, WU Ji, YAN Jingye, WU Zhao, YAN Fabao, WU Lin. Simulations of the Antenna-shielding Effect of the Daocheng Solar Radio Telescope (DSRT) (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 294-305. DOI: 10.11728/cjss2022.02.210202017
Citation: LU Guang, WANG Bing, CHEN Yao, WU Ji, YAN Jingye, WU Zhao, YAN Fabao, WU Lin. Simulations of the Antenna-shielding Effect of the Daocheng Solar Radio Telescope (DSRT) (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 294-305. DOI: 10.11728/cjss2022.02.210202017

Simulations of the Antenna-shielding Effect of the Daocheng Solar Radio Telescope (DSRT)

doi: 10.11728/cjss2022.02.210202017
  • Received Date: 2021-02-02
  • Accepted Date: 2021-10-08
  • Rev Recd Date: 2021-10-29
  • Available Online: 2022-05-25
  • The Daocheng Solar Radio Telescope (DSRT) is a next-generation solar radio telescope funded by the Chinese Meridian Project–Phase II. DSRT is composed of 313 parabolic antennas with a diameter of six meters. The antennas are evenly distributed in a circle with a diameter of one kilometer. With the synthetic aperture imaging techniques, key factors determining the DSRT imaging quality are accurate calibrations of amplitude and phase of the received signals. Yet, under some circumstances, adjacent antennas of DSRT may shield each other, which will affects the amplitude and phase of the received signals and thus deteriorate imaging quality. In this study, such shielding effects of three- or two-antenna using the electromagnetic simulation software at frequencies of 300 MHz (λ=1 m) were simulated. The shielding effect in the three-antenna system is slightly worse than that in the two-antenna system. When the projected distance of adjacent antennas is taken to be –1λ, i.e., the most serious effect of shielding considered here, the horizontal and vertical gains of the system with two/three antennas decline by 0.6/0.6 dB and 0.3/0.4 dB, respectively, and the horizontal and vertical phase deviations are –3.3º/–3.871º and –1.744º/–2.244º, respectively, compared to the system with one antenna. Other situations with different projected shielding distances are also investigated. The results show that the two-antenna system can sufficiently describe the shielding effect associated with DSRT. Such effect should be properly taken into account when processing the future DSRT data so as to improve the data usage efficiency and imaging quality.

     

  • loading
  • [1]
    MCLEAN D J. Metre-wave solar radio bursts[M]//Solar Radiophysics. Cambridge: Cambridge University Press, 1985
    [2]
    WILD J P, SMERD S F, WEISS A A. Solar bursts[J]. Annual Review of Astronomy and Astrophysics, 1963, 1: 291-366 doi: 10.1146/annurev.aa.01.090163.001451
    [3]
    FENG S W, CHEN Y, KONG X L, et al. Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of type II Radio Burst[J]. The Astrophysical Journal, 2012, 753(1): 21 doi: 10.1088/0004-637X/753/1/21
    [4]
    CHEN Y, DU G H, FENG L, et al. A solar type II radio burst from coronal mass ejection-coronal ray interaction: simultaneous radio and extreme ultraviolet imaging[J]. The Astrophysical Journal, 2014, 787(1): 59 doi: 10.1088/0004-637X/787/1/59
    [5]
    FENG S W, CHEN Y, KONG X L, et al. Diagnostics on the source properties of a type II radio burst with spectral bumps[J]. The Astrophysical Journal, 2013, 767(1): 29 doi: 10.1088/0004-637X/767/1/29
    [6]
    ALAIN K, JEANMARC D. The nancay radioheliograph[J]. Coronal Physics from Radio and Space Observations, 1997, 483: 192-201
    [7]
    GRECHNEV V V, LESOVOI S V, SMOLKOV G Y, et al. The Siberian solar radio telescope: the current state of the instrument, observations, and data[J]. Solar Physics, 2003, 216(1/2): 239-272 doi: 10.1023/A:1026153410061
    [8]
    XU L, YAN Y H, MA L, et al. Image processing for synthesis imaging of Mingantu Spectral Radioheliograph (MUSER)[J]. Multimedia Tools and Applications, 2018, 77(16): 20937-20954 doi: 10.1007/s11042-017-5545-5
    [9]
    NAKAJIMA H, NISHIO M, ENOME S, et al. The Nobeyama radioheliograph[J]. Proceedings of the IEEE, 1994, 82(5): 705-713 doi: 10.1109/5.284737
    [10]
    杜清府, 程仁君, 陈昌硕, 等. 太阳射电观测系统多通道变频电路一致性补偿方法与实现[J]. 中国科学:技术科学, 2019, 49(8): 901-909 doi: 10.1360/N092018-00408

    DU Qingfu, CHENG Renjun, CHEN Changshuo, et al. A compensation method for the consistency of multi-channel mixing circuit for solar radio observation system[J]. Scientia Sinica Technologica, 2019, 49(8): 901-909 doi: 10.1360/N092018-00408
    [11]
    徐珂, 尚自乾, 严发宝, 等. 毫米波宽带太阳射电观测系统的信号平坦度补偿方法[J]. 中国科学:技术科学, 2021, 51(1): 413-423

    XU Ke, SHANG Ziqian, YAN Fabao, et al. Compensation method of signal flatness for a broadband solar millimeter radio observation system[J]. Scientia Sinica Technologica, 2021, 51(1): 413-423
    [12]
    THOMPSON A R, MORAN J M, SWENSON JR G W. Interferometry and Synthesis in Radio Astronomy[M]. New York: John Wiley & Sons, 2008
    [13]
    ROHLFS K, WILSON T L. 射电天文工具[M]. 姜碧沩, 译. 北京: 北京师范大学出版社, 2008

    ROHLFS K, WILSON T L. Tools of Radio Astronomy[M]. JIANG Biwei, trans. Beijing: Beijing Normal University Press, 2008
    [14]
    颜毅华, 陈林杰, 谭宝林, 等. 太阳大气等离子体动力学射电成像探测系统[J]. 中国科学:物理学 力学 天文学, 2019, 49(5): 059608

    YAN Yihua, CHEN Linjie, TAN Baolin, et al. Radioheliograph array for the solar atmospheric dynamics[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(5): 059608
    [15]
    SERGEY L, ALEXANDER A, ALEKSEY K, et al. Siberian Radioheliograph: first results[J]. Solar-Terrestrial Physics, 2017, 3(1): 3-18 doi: 10.12737/article_58f96ec60fec52.86165286
    [16]
    WANG C. Development of the Chinese meridian project[J]. Chinese Journal of Space Science, 2010, 30(4): 382-384
    [17]
    WANG C. Recent advances in observation and research of the Chinese Meridian Project[J]. Chinese Journal of Space Science, 2018, 38(5): 640-649
    [18]
    王添鸽, 马迁, 欧刚强. 舰艇卫星通信天线遮挡问题研究[J]. 舰船电子工程, 2019, 39(6): 76-78

    WANG Tiange, MA Qian, OU Gangqiang. Research on blocking problems of the satellite antenna of warships[J]. Ship Electronic Engineering, 2019, 39(6): 76-78
    [19]
    王国民, 谷晓鹏, 邱恺. 机载天线遮挡角在地空通信中的影响探析[J]. 通信技术, 2016, 49(12): 1724-1727

    WANG Guomin, GU Xiaopeng, QIU kai. Effects of airborne-antenna blocking angle on air-grounding communication[J]. Communications Technology, 2016, 49(12): 1724-1727
    [20]
    FENG S W, CHEN Y, LI C Y, et al. Harmonics of solar radio spikes at metric wavelengths[J]. Solar Physics, 2018, 293(3): 39 doi: 10.1007/s11207-018-1263-z
    [21]
    STUTZMAN W L, THIELE G A. Antenna Theory and Design[M]. 2 nd ed. New York: Wiley, 1998
    [22]
    宋东安, 易学勤, 温定娥. 金属挡板遮挡效应试验[J]. 舰船科学技术, 2010, 32(9): 76-79

    SONG Dong’an, YI Xueqin, WEN Dinge. Experimental study of shaded effectiveness of plates[J]. Ship Science and TEchnology, 2010, 32(9): 76-79
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article Views(727) PDF Downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return