Volume 42 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
SU Ye, LI Jingyuan, LÜ Jianyong, WANG Ming, WEI Guanchun, SUN Meng, XIONG Shiping, LI Zheng. Modeling Study on the Response of the Thermospheric Vertical Winds to Geomagnetic Storm at Middle Latitudes (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 246-254. DOI: 10.11728/cjss2022.02.210303023
Citation: SU Ye, LI Jingyuan, LÜ Jianyong, WANG Ming, WEI Guanchun, SUN Meng, XIONG Shiping, LI Zheng. Modeling Study on the Response of the Thermospheric Vertical Winds to Geomagnetic Storm at Middle Latitudes (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 246-254. DOI: 10.11728/cjss2022.02.210303023

Modeling Study on the Response of the Thermospheric Vertical Winds to Geomagnetic Storm at Middle Latitudes

doi: 10.11728/cjss2022.02.210303023
  • Received Date: 2021-03-02
  • Accepted Date: 2021-05-13
  • Rev Recd Date: 2021-05-28
  • Available Online: 2022-05-25
  • Based on the simulation data of TIMEGCM, the influence of horizontal wind variations on middle-latitude vertical wind changes during the geomagnetic storms (100~650 km) on 10 September 2005 is studied. The model simulations were diagnostically analyzed, which is to investigate the causes of storm-time vertical wind changes. The results show that the vertical wind variations above 250 km depend on the changes of horizontal wind, and the vertical wind changes below 250 km are driven by the vertical wind at high altitudes. In the early initial phase of geomagnetic storms, the meridional winds have more significant influence on the vertical winds over 250 km than the zonal winds. As the storm evolves, the zonal winds contributed more to the changes of vertical wind. The responses of temperature variations to the geomagnetic storms are similar with horizontal wind changes. At the beginning of the initial phase, the temperature propagates faster along the longitude, and the meridional wind changes faster. As the storm evolves, the temperature propagates faster along the latitude, and the zonal wind changes faster.

     

  • loading
  • [1]
    LIU Libo, WAN Weixing. A brief overview on the issue on space physics and space weather[J]. Chinese Journal of Geophysics, 2014, 57(11): 3493-3501 doi: 10.6038/cjg20141101
    [2]
    DICKINSON R E, GEISLER J E. Vertical motion field in the middle thermosphere from satellite drag densities[J]. Monthly Weather Review, 1968, 96(9): 606-616 doi: 10.1175/1520-0493(1968)096<0606:VMFITM>2.0.CO;2
    [3]
    RISHBETH H, MOFFETT R J, BAILEY G J. Continuity of air motion in the mid-latitude thermosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1969, 31(8): 1035-1047 doi: 10.1016/0021-9169(69)90103-2
    [4]
    BURNSIDE R G, HERRERO F A, MERIWETHER JR J W, et al. Optical observations of thermospheric dynamics at Arecibo[J]. Journal of Geophysical Research, 1981, 86(A7): 5532-5540 doi: 10.1029/ja086ia07p05532
    [5]
    HERNANDEZ G. Vertical motions of the neutral thermosphere at midlatitude[J]. Geophysical Research Letters, 1982, 9(5): 555-557 doi: 10.1029/gl009i005p00555
    [6]
    SPENCER N W, THEIS R F, WHARTON L E, et al. Local vertical motions and kinetic temperature from AE-C as evidence for aurora-induced gravity waves[J]. Geophysical Research Letters, 1976, 3(6): 313-316 doi: 10.1029/gl003i006p00313
    [7]
    HARDING B J, MAKELA J J, QIN J Q, et al. Atmospheric scattering effects on ground-based measurements of thermospheric vertical wind, horizontal wind, and temperature[J]. Journal of Geophysical Research, 2017, 122(7): 7654-7669 doi: 10.1002/2017ja023942
    [8]
    HU Guoyuan, AI Yong, ZHANG Yange, et al. A method for vertical neutral wind in the thermosphere deduced from all-sky FPI measurements[J]. Chinese Journal of Geophysics, 2014, 57(11): 3695-3702 doi: 10.6038/cjg20141124
    [9]
    ZHANG S R, ERICKSON P J, FOSTER J C, et al. Thermospheric poleward wind surge at midlatitudes during great storm intervals[J]. Geophysical Research Letters, 2015, 42(13): 5132-5140 doi: 10.1002/2015GL064836
    [10]
    ZHANG R L, LIU L B, LE H J, et al. Equatorial ionospheric electrodynamics over Jicamarca during the 6-11 September 2017 space weather event[J]. Journal of Geophysical Research, 2019, 124(2): 1292-1306 doi: 10.1029/2018JA026295
    [11]
    BIONDI M A. Measured vertical motion and converging and diverging horizontal flow of the midlatitude thermosphere[J]. Geophysical Research Letters, 1984, 11(1): 84-87 doi: 10.1029/gl011i001p00084
    [12]
    REES D, SMITH R W, CHARLETON P J, et al. The generation of vertical thermospheric winds and gravity waves at auroral latitudes—I. Observations of vertical winds[J]. Planetary and Space Science, 1984, 32(6): 667 doi: 10.1016/0032-0633(84)90092-8
    [13]
    PETEHERYCH S, SHEPHERD G G, WALKER J K. Observation of vertical E-region neutral winds in two intense auroral arcs[J]. Planetary and Space Science, 1985, 33(8): 869-873 doi: 10.1016/0032-0633(85)90101-1
    [14]
    SMITH R W, HERNANDEZ G. Vertical winds in the thermosphere within the polar cap[J]. Journal of Atmospheric and Terrestrial Physics, 1995, 57(6): 611-620 doi: 10.1016/0021-9169(94)00101-s
    [15]
    LI J Y, WANG W B, LU J Y, et al. On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes[J]. Geophysical Research Letters, 2018, 45(19): 10128-10137 doi: 10.1029/2018gl078968
    [16]
    LI J Y, WANG W B, LU J Y, et al. A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes[J]. Journal of Geophysical Research, 2019, 124(5): 3666-3680 doi: 10.1029/2019ja026533
    [17]
    RICHMOND A D, RIDLEY E C, ROBLE R G. A thermosphere/ionosphere general circulation model with coupled electrodynamics[J]. Geophysical Research Letters, 1992, 19(6): 601-604 doi: 10.1029/92GL00401
    [18]
    RICHMOND A D. Ionospheric electrodynamics[M]//VOLLAND H. Handbook of Atmospheric Electrodynamics. Boca Raton: CRC Press, 1995: 249-290
    [19]
    ROBLE R G, RIDLEY E C. An auroral model for the NCAR thermospheric general circulation model (TGCM)[J]. Annales Geophysicae Series A-upper Atmosphere and Space Sciences, 1987, 5(6): 369-382
    [20]
    ROBLE R G, RIDLEY E C. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30-500 km)[J]. Geophysical Research Letters, 1994, 21(6): 417-420 doi: 10.1029/93gl03391
    [21]
    ROBLE R G. Energetics of the mesosphere and thermosphere[M]//JOHNSON R M, KILLEEN T L. The Upper Mesosphere and Lower Thermosphere: A review of Experiment and Theory. Washington: American Geophysical Union, 1995: 1-21
    [22]
    ROBLE R G. The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM)[M]//SCHUNK R W. Solar-Terrestrial Energy Program: Handbook of Ionospheric Models. Logan: Utah State University, 1996: 281-288
    [23]
    HEELIS R A, LOWELL J K, SPIRO R W. A model of the high-latitude ionospheric convection pattern[J]. Journal of Geophysical Research, 1982, 87(A8): 6339-6345 doi: 10.1029/JA087iA08p06339
    [24]
    KLIMENKO M V, KLIMENKO V V, RATOVSKY K G, et al. Ionospheric effects caused by the series of geomagnetic storms of September 9-14, 2005[J]. Geomagnetism and Aeronomy, 2011, 51(3): 364-376 doi: 10.1134/s0016793211030108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(390) PDF Downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return