Volume 42 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
ZHU Linling, ZHANG Xiaoxin, GU Bin. Simulation of the Diffusion Processes of Solar Energetic Particle Events Based on the Green Functional Theory (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 191-198. DOI: 10.11728/cjss2022.02.210326038
Citation: ZHU Linling, ZHANG Xiaoxin, GU Bin. Simulation of the Diffusion Processes of Solar Energetic Particle Events Based on the Green Functional Theory (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 191-198. DOI: 10.11728/cjss2022.02.210326038

Simulation of the Diffusion Processes of Solar Energetic Particle Events Based on the Green Functional Theory

doi: 10.11728/cjss2022.02.210326038
  • Received Date: 2021-03-26
  • Accepted Date: 2022-07-22
  • Rev Recd Date: 2021-11-08
  • Available Online: 2022-05-25
  • In order to investigate the diffusion processes of Solar Energetic Particle (SEP) events, four SEP events with different coronal-foot-point longitudes are simulated based on the two-phase model proposed by Huang et al. The simulations agree with the observations from GOES satellites, indicating that the model has wide applicability. Sensitivity tests for multiple transmission parameters in the model show that the change of the longitude of the coronal foot point affects the detection time and peak value of the observations, and the change of the solar wind speed has different influencing mechanisms to the SEP events with different coronal-foot-point longitudes. Furthermore, it can be found that the transverse diffusion coefficient of the corona area is associated with the diffusion processes of SEP events along the solar surface, and mainly affects the intensity of the event. Different radial diffusion coefficients mainly change the arrival time of the events, and it plays a more effective role in the diffusion of SEP events in comparison with the lateral diffusion coefficient, since the SEP events mainly transmit along the interplanetary magnetic field. In addition, the escape time that manifests the average lifetime of the SEP source or the time window for the outflow of SEPs from the solar activity, has the least effect on the simulations in comparison with the other parameters.

     

  • loading
  • [1]
    SHEA M A, SMART D F. Solar proton event patterns: the rising portion of five solar cycles[J]. Advances in Space Research, 2002, 29(3): 325-330 doi: 10.1016/S0273-1177(01)00592-0
    [2]
    REAMES D V. Magnetic topology of impulsive and gradual solar energetic particle events[J]. The Astrophysical Journal, 2002, 571(1): L63-L66 doi: 10.1086/341149
    [3]
    KALLENRODE M B. Current views on impulsive and gradual solar energetic particle events[J]. Journal of Physics G: Nuclear and Particle Physics, 2003, 29(5): 965-981 doi: 10.1088/0954-3899/29/5/316
    [4]
    沈琳, 敦金平, 张效信, 等. 基于PCA方法对太阳活动区主要参量的分析[J]. 空间科学学报, 2014, 34(6): 765-772 doi: 10.11728/cjss2014.06.765

    SHEN Lin, DUN Jinping, ZHANG Xiaoxin, et al. Analysis of the major parameters in solar active regions based on PCA method[J]. Chinese Journal of Space Science, 2014, 34(6): 765-772 doi: 10.11728/cjss2014.06.765
    [5]
    LE G M, ZHANG X F. Dependence of large SEP events with different energies on the associated flares and CMEs[J]. Research in Astronomy and Astrophysics, 2017, 17(12): 123 doi: 10.1088/1674-4527/17/12/123
    [6]
    邱柏翰, 李川. 对一个太阳风暴及其行星际和地磁效应的研究[J]. 天文学报, 2015, 56(1): 44-52

    QIU Baihan, LI Chuan. The study of a solar storm and its interplanetary and geomagnetic effects[J]. Acta Astronomica Sinica, 2015, 56(1): 44-52
    [7]
    LE G M, TANG Y H, HAN Y B. Solar energetic particle event of 2005 January 20: release times and possible sources[J]. Chinese Journal of Astronomy and Astrophysics, 2006, 6(6): 751-758 doi: 10.1088/1009-9271/6/6/15
    [8]
    魏稳稳, 沈芳, 左平兵. 基于磁流体力学模拟的太阳高能粒子物理模式研究进展[J]. 天文学进展, 2015, 33(1): 1-26 doi: 10.3969/j.issn.1000-8349.2015.01.01

    WEI Wenwen, SHEN Fang, ZUO Pingbing. Research progress on the solar energetic particle model based on magnetohydrodynamic simulation[J]. Progress in Astronomy, 2015, 33(1): 1-26 doi: 10.3969/j.issn.1000-8349.2015.01.01
    [9]
    王尚洁, 魏稳稳, 刘佑生, 等. 三维MHD背景场下太阳高能粒子平均自由程模拟[J]. 空间科学学报, 2020, 40(6): 980-989 doi: 10.11728/cjss2020.06.980

    WANG Shangjie, WEI Wenwen, LIU Yousheng, et al. Simulation of mean free path of solar energetic particles in three-dimensional MHD background[J]. Chinese Journal of Space Science, 2020, 40(6): 980-989 doi: 10.11728/cjss2020.06.980
    [10]
    REID G C. A diffusive model for the initial phase of a solar proton event[J]. Journal of Geophysical Research, 1964, 69(13): 2659-2667 doi: 10.1029/JZ069i013p02659
    [11]
    AXFORD W I. Anisotropic diffusion of solar cosmic rays[J]. Planetary and Space Science, 1965, 13(12): 1301-1309 doi: 10.1016/0032-0633(65)90063-2
    [12]
    BURLAGA L F. Anisotropic diffusion of solar cosmic rays[J]. Journal of Geophsical Research, 1967, 72(17): 4449-4466 doi: 10.1029/JZ072i017p04449
    [13]
    PARKER E N. The passage of energetic charged particles through interplanetary space[J]. Planetary and Space Science, 1965, 13(1): 9-49 doi: 10.1016/0032-0633(65)90131-5
    [14]
    RUFFOLO D. Interplanetary transport of decay protons from solar flare neutrons[J]. The Astrophysical Journal, 1991, 382(2): 688-698
    [15]
    何宏青, 陈传淼, 徐大. 一类偏积分微分方程二阶差分空间半离散格式的全局行为[J]. 应用数学学报, 2009, 32(3): 514-524 doi: 10.3321/j.issn:0254-3079.2009.03.013

    HE Hongqing, CHEN Chuanmiao, XU Da. Global behavior of second order spatially semi-discrete difference scheme for a partial integro-differential equation[J]. Acta Mathematicae Applicatae Sinica, 2009, 32(3): 514-524 doi: 10.3321/j.issn:0254-3079.2009.03.013
    [16]
    QIN G, HE H Q, ZHANG M. An effect of perpendicular diffusion on the anisotropy of solar energetic particles from unconnected sources[J]. The Astrophysical Journal, 2011, 738(1): 28 doi: 10.1088/0004-637X/738/1/28
    [17]
    WANG Y, QIN G, ZHANG M. Effects of perpendicular diffusion on energetic particles accelerated by the interplanetary coronal mass ejection shock[J]. The Astrophysical Journal, 2012, 752(1): 37 doi: 10.1088/0004-637X/752/1/37
    [18]
    黄永年, 王志丹. 影响地球环境的太阳质子事件的时间过程[J]. 空间科学学报, 1998, 18(1): 81-85

    HUANG Yongnian, WANG Zhidan. The temporal processes of the solar proton events affectig the earth environment[J]. Chinese Journal of Space Science, 1998, 18(1): 81-85
    [19]
    黄永年, 王志丹, 王永利. 高能太阳宇宙线行星际传播的Green函数及传播模型[J]. 中国科学(A辑), 1998, 41(11): 1197-1205 doi: 10.1007/BF02871982

    HUANG Yongnian, WANG Zhidan, WANG Yongli. Propagation model of high-energy solar cosmic rays in interplanetary space and Green function[J]. Science in China Series A: Mathematics, 1998, 41(11): 1197-1205 doi: 10.1007/BF02871982
    [20]
    黄永年, 王志丹, 王世金. 一个新的太阳宇宙线的日-地传输模型[J]. 地球物理学报, 2000, 43(5): 581-588 doi: 10.3321/j.issn:0001-5733.2000.05.001

    HUANG Yongnian, WANG Zhidan, WANG Shijin. A new model for solar-terrestrial propagation of solar cosmic rays[J]. Chinese Journal of Geophysics, 2000, 43(5): 581-588 doi: 10.3321/j.issn:0001-5733.2000.05.001
    [21]
    王娅冰, 郑宇卿, 顾斌, 等. 1 AU轨道SEP粒子通量的计算及与多卫星观测结果的比较[J]. 空间科学学报, 2016, 36(3): 331-335

    WANG Yabing, ZHENG Yuqing, GU Bin, et al. Calculation of the SEP flux at 1 AU orbit and its comparison with multi-satellites observations[J]. Chinese Journal of Space Science, 2016, 36(3): 331-335
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article Views(237) PDF Downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return