Volume 42 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
LIU Yan, WEN Desheng, YI Hongwei, YIN Qinye. Simulation of Apparent Magnitude Curves of Space Objects (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 485-491. DOI: 10.11728/cjss2022.03.210721079
Citation: LIU Yan, WEN Desheng, YI Hongwei, YIN Qinye. Simulation of Apparent Magnitude Curves of Space Objects (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 485-491. DOI: 10.11728/cjss2022.03.210721079

Simulation of Apparent Magnitude Curves of Space Objects

doi: 10.11728/cjss2022.03.210721079
  • Received Date: 2021-02-08
  • Accepted Date: 2022-02-25
  • Rev Recd Date: 2022-04-01
  • Available Online: 2022-05-26
  • With the increasing frequency of human space activities and the increasing variety and number of space targets, it is of great scientific value to identify the key features of unknown space targets. By segmentation using auxiliary graphics software, the surface coordinates of sphere, cone and cylinder with a normal vector are built. Based on the satellite simulation toolkit, the target orbit and position parameters are obtained. Combining with isotropic Phong BRDF model and attitude quaternion update model, the apparent magnitudes of these four shape space targets under ground observation conditions are simulated. Simulation results show that the target is affected by the spatial position, shape and attitude in different degrees, and each light curve has its own characteristics. Because the sphere is completely centrosymmetric, the light curve is mainly affected by the space position. Light curve waveforms of the cone, cube and cylinder are mainly influenced by shape, the curve trends are mainly influenced by position, and wave frequencies are mainly influenced by attitude angular rate. By statistical analysis of the data, a prior model can be provided for the subsequent inversion of space target position, attitude and shape.

     

  • loading
  • [1]
    GENG Wendong, DU Xiaoping, LI Zhi, et al. Introduction to Space Situational Awareness[M]. Beijing: National Defense Industry Press, 2015
    [2]
    LIU D, WANG X D, LI Y H, et al. Space target detection in optical image sequences for wide-field surveillance[J]. International Journal of Remote Sensing, 2020, 41(20): 7846-7867 doi: 10.1080/01431161.2020.1782508
    [3]
    单斌, 梁勇奇, 李恒年. 基于光度观测的空间目标姿态与角速度估计[J]. 光学学报, 2017, 37(5): 0512002 doi: 10.3788/AOS201737.0512002

    SHAN Bin, LIANG Yongqi, LI Hengnian. Attitude and angular speed estimation of spacial objects based on photometric observation[J]. Acta Optica Sinica, 2017, 37(5): 0512002 doi: 10.3788/AOS201737.0512002
    [4]
    刘浩, 杜小平, 苟瑞新. 基于Phong模型的地球同步轨道目标视星等仿真研究[J]. 激光与光电子学进展, 2016, 53(4): 041502

    LIU Hao, DU Xiaoping, GOU Ruixin. Apparent magnitude measurement of geosynchronous orbit space object based on Phong model[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041502
    [5]
    孙成明, 张伟, 王治乐. 双向反射分布函数在空间目标可见光反射特性建模中的应用[J]. 光学技术, 2008, 34(5): 750-753,757 doi: 10.3321/j.issn:1002-1582.2008.05.032

    SUN Chengming, ZHANG Wei, WANG Zhile. Application of BRDF for modeling on the visible reflection characteristics of spatial targets[J]. Optical Technique, 2008, 34(5): 750-753,757 doi: 10.3321/j.issn:1002-1582.2008.05.032
    [6]
    周叶剑, 马岩, 张磊, 等. 空间目标在轨状态雷达成像估计技术综述[J]. 雷达学报, 2021, 10(4): 607-621 doi: 10.12000/JR21086

    ZHOU Yejian, MA Yan, ZHANG Lei, et al. Review of on-orbit state estimation of space targets with radar imagery[J]. Journal of Radars, 2021, 10(4): 607-621 doi: 10.12000/JR21086
    [7]
    牟忠凯. 卫星姿态确定的非线性滤波方法研究[D]. 郑州: 解放军信息工程大学, 2010: 8-18

    MOU Zhongkai. Research on Nonlinear Filtering of Satellite Attitude Determination[D]. Zhengzhou: Information Engineering University, 2010: 8-18
    [8]
    章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998: 185-207

    ZHANNG Renwei. Satellite Orbital Attitude Dynamics and Control[M]. Beijing: Beihang University Press, 1998: 185-207
    [9]
    谈斌, 姚东升, 向春生, 等. 类柱体空间目标的星等计算模型研究[J]. 光电工程, 2008, 35(7): 33-37

    TAN Bin, YAO Dongsheng, XIANG Chunsheng, et al. Star magnitude computing model of space targets like prism[J]. Opto-Electronic Engineering, 2008, 35(7): 33-37
    [10]
    胡淼, 徐国蕊, 张慧, 等. 地球同步轨道立方体目标的视星等测算[J]. 光电工程, 2013, 40(6): 6-10

    HU Miao, XU Guorui, ZHANG Hui, et al. Star magnitude measurement of geosynchronous orbit cube target[J]. Opto-Electronic Engineering, 2013, 40(6): 6-10
    [11]
    ASHIKHMIN M, SHIRLEY P. An anisotropic Phong BRDF model[J]. Journal of Graphics Tools, 2000, 5(2): 25 doi: 10.1080/10867651.2000.10487522
    [12]
    CAI Xingfu, ZHANG Xiongmei, GAO Jing. Analysis and Recognition of Space Target Characteristics[M]. Xi ’an: Northwestern Polytechnical University Press, 2015: 13-14
    [13]
    LINARES R, CRASSIDIS J L, JAH M K, et al. Astrometric and photometric data fusion for resident space object orbit, attitude, and shape determination via multiple-model adaptive estimation[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Toronto, Canada: AIAA, 2010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article Views(239) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return