Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
HE Xinran, ZHONG Qiuzhen, CUI Yanmei, LIU Siqing, SHI Yurong, YAN Xiaohui, WANG Zisiyu. Solar Flare Short-term Forecast Model Based on Long and Short-term Memory Neural Network (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028
Citation: HE Xinran, ZHONG Qiuzhen, CUI Yanmei, LIU Siqing, SHI Yurong, YAN Xiaohui, WANG Zisiyu. Solar Flare Short-term Forecast Model Based on Long and Short-term Memory Neural Network (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028

Solar Flare Short-term Forecast Model Based on Long and Short-term Memory Neural Network

doi: 10.11728/cjss2022.05.210315028
  • Received Date: 2021-03-12
  • Accepted Date: 2021-05-19
  • Rev Recd Date: 2021-05-17
  • Available Online: 2022-09-22
  • Solar flares are a kind of violent solar eruptive activity phenomenon and an important warning device of space weather disturbance. In space weather forecasting, flare forecasting is an important forecast content. This paper proposes a flare prediction model based on long and short-term memory neural network, which uses the time sequence of magnetic field changes in the solar active area in the past 24 h to construct samples, and analyzes the time series evolution of magnetic field characteristics through the long and short-term memory neural network to predict whether ≥M-level flares will occur in the next 48 h. This paper uses a data set for all active area samples from May 2010 to May 2017, and selects 10 magnetic field characteristic parameters of SDO/HMI SHARP. In the modeling process, six feature parameters with high weight, gain rate and coverage rate were selected as input parameters through XGBoost method. Through test comparison, the false report rate and accuracy rate of the model are similar to the traditional machine learning model, and the accuracy rate and critical success index are better than the traditional machine learning model, which are 0.7483 and 0.7402 respectively. The overall effect of the model is better than that of the traditional machine learning model.

     

  • loading
  • [1]
    MCINTOSH P S. The classification of sunspot groups[J]. Solar Physics, 1990, 125(2): 251-267 doi: 10.1007/BF00158405
    [2]
    CROWN M D. Validation of the NOAA space weather prediction center’s solar flare forecasting look-up table and forecaster-issued probabilities[J]. Space Weather, 2012, 10(6): S06006
    [3]
    MURRAY S A, BINGHAM S, SHARPE M, et al. Flare forecasting at the met office space weather operations Centre[J]. Space Weather, 2017, 15(4): 577-588 doi: 10.1002/2016SW001579
    [4]
    DEVOS A, VERBEECK C, ROBBRECHT E. Verification of space weather forecasting at the regional warning center in Belgium[J]. Journal of Space Weather and Space Climate, 2014, 4: A29 doi: 10.1051/swsc/2014025
    [5]
    BLOOMFIELD D S, HIGGINS P A, MCATEER R T J, et al. Toward reliable benchmarking of solar flare forecasting methods[J]. The Astrophysical Journal Letters, 2012, 747(2): L41 doi: 10.1088/2041-8205/747/2/L41
    [6]
    SHIN S, LEE J Y, MOON Y J, et al. Development of daily maximum flare-flux forecast models for strong solar flares[J]. Solar Physics, 2016, 291(3): 897-909 doi: 10.1007/s11207-016-0869-2
    [7]
    ANASTASIADIS A, PAPAIOANNOU A, SANDBERG I, et al. Predicting flares and solar energetic particle events: the FORSPEF tool[J]. Solar Physics, 2017, 292(9): 134 doi: 10.1007/s11207-017-1163-7
    [8]
    SONG H, TAN C Y, JING J, et al. Statistical assessment of photospheric magnetic features in imminent solar flare predictions[J]. Solar Physics, 2009, 254(1): 101-125 doi: 10.1007/s11207-008-9288-3
    [9]
    YANG X, LIN G H, ZHANG H Q, et al. Magnetic nonpotentiality in photospheric active regions as a predictor of solar flares[J]. The Astrophysical Journal Letters, 2013, 774(2): L27 doi: 10.1088/2041-8205/774/2/L27
    [10]
    MURANUSHI T, SHIBAYAMA T, MURANUSHI Y H, et al. UFCORIN: a fully automated predictor of solar flares in GOES X-ray flux[J]. Space Weather, 2015, 13(11): 778-796 doi: 10.1002/2015SW001257
    [11]
    COLAK T, QAHWAJI R. Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares[J]. Space Weather, 2009, 7(6): S06001
    [12]
    AHMED O W, QAHWAJI R, COLAK T, et al. Solar flare prediction using advanced feature extraction, machine learning, and feature selection[J]. Solar Physics, 2013, 283(1): 157-175 doi: 10.1007/s11207-011-9896-1
    [13]
    HADA-MURANUSHI Y, MURANUSHI T, ASAI A, et al. A deep-learning approach for operation of an automated realtime flare forecast[OL]. arXiv: 1606.01587, 2016
    [14]
    NISHIZUKA N, SUGIURA K, KUBO Y, et al. Deep flare net (DeFN) model for solar flare prediction[J]. The Astrophysical Journal, 2018, 858(2): 113 doi: 10.3847/1538-4357/aab9a7
    [15]
    HUANG X, WANG H N, XU L, et al. Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms[J]. The Astrophysical Journal, 2018, 856(1): 7 doi: 10.3847/1538-4357/aaae00
    [16]
    QAHWAJI R, COLAK T. Automatic short-term solar flare prediction using machine learning and sunspot associations[J]. Solar Physics, 2007, 241(1): 195-211 doi: 10.1007/s11207-006-0272-5
    [17]
    LEKA K D, BARNES G, WAGNER E. The NWRA classification infrastructure: description and extension to the discriminant analysis flare forecasting system (DAFFS)[J]. Journal of Space Weather and Space Climate, 2018, 8: A25 doi: 10.1051/swsc/2018004
    [18]
    DOMIJAN K, BLOOMFIELD D S, PITIÉ F. Solar flare forecasting from magnetic feature properties generated by the solar monitor active region tracker[J]. Solar Physics, 2019, 294(1): 6 doi: 10.1007/s11207-018-1392-4
    [19]
    AL-GHRAIBAH A, BOUCHERON L E, MCATEER R T J. An automated classification approach to ranking photospheric proxies of magnetic energy build-up[J]. Astronomy & Astrophysics, 2015, 579: A64
    [20]
    WANG J X, ZHOU G P, JIN C L, et al. Solar intranetwork magnetic elements: bipolar flux appearance[J]. Solar Physics, 2012, 278(2): 299-322 doi: 10.1007/s11207-012-9950-7
    [21]
    RUST D M, SAKURAI T, GAIZAUSKAS V, et al. Preflare state[J]. Solar Physics, 1994, 153(1/2): 1-17
    [22]
    HUANG X, YU D R, HU Q H, et al. Short-term solar flare prediction using predictor teams[J]. Solar Physics, 2010, 263(1/2): 175-184
    [23]
    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507 doi: 10.1126/science.1127647
    [24]
    LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444 doi: 10.1038/nature14539
    [25]
    COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. The Journal of Machine Learning Research, 2011, 12: 2493-2537
    [26]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90 doi: 10.1145/3065386
    [27]
    李蓉, 黄鑫. 一种黑子特征自动提取的太阳耀斑模型[J]. 中国科学: 物理学 力学 天文学, 2018, 48(11): 119601

    LI Rong, HUANG Xin. Solar flare forecasting model based on automatic feature extraction of sunspots[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(11): 119601
    [28]
    LIU H, LIU C, WANG J T L, et al. Predicting solar flares using a long short-term memory network[J]. The Astrophysical Journal, 2019, 877(2): 121 doi: 10.3847/1538-4357/ab1b3c
    [29]
    CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22 nd ACM SIGKDD International Conference On Knowledge Discovery And Data Mining. San Francisco: ACM, 2016: 785-794
    [30]
    LEE C H, LIN C R, CHEN M S. Sliding-window filtering: an efficient algorithm for incremental mining[C]//Proceedings of the Tenth International Conference on Information and Knowledge Management. Atlanta: ACM, 2001: 263-270
    [31]
    GOLAB L, DEHAAN D, DEMAINE E D, et al. Identifying frequent items in sliding windows over on-line packet streams[C]//Proceedings of the 3 rd ACM SIGCOMM Conference on Internet Measurement. Miami Beach: ACM, 2003: 173-178
    [32]
    CHANG J H, LEE W S. A sliding window method for finding recently frequent Itemsets over online data streams[J]. Journal of Information Science and Engineering, 2004, 20(4): 753-762
    [33]
    LIU Y J, FANG Y J, ZHU X M. Modeling of hydraulic turbine systems based on a bayesian-gaussian neural network driven by sliding window data[J]. Journal of Zhejiang University Science C, 2010, 11(1): 56 doi: 10.1631/jzus.C0910176
    [34]
    HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[OL]. arXiv: 1207.0580, 2012
    [35]
    SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197-227
    [36]
    BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and regression trees[J]. Biometrics, 1984, 40(3): 874
    [37]
    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874 doi: 10.1016/j.patrec.2005.10.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article Views(206) PDF Downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return