Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
RU Penglei, LIU Mengwei, GONG Junjie, WANG Wen, ZHU Haotian, ZHU Di, DONG Xiaolong. High Resolution Design and Realization of 400 MHz Bandwidth Surface Acoustic Wave Chirp Transform Spectrum Analyzer for Deep Space Exploration (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 991-1003 doi: 10.11728/cjss2022.05.210611071
Citation: RU Penglei, LIU Mengwei, GONG Junjie, WANG Wen, ZHU Haotian, ZHU Di, DONG Xiaolong. High Resolution Design and Realization of 400 MHz Bandwidth Surface Acoustic Wave Chirp Transform Spectrum Analyzer for Deep Space Exploration (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 991-1003 doi: 10.11728/cjss2022.05.210611071

High Resolution Design and Realization of 400 MHz Bandwidth Surface Acoustic Wave Chirp Transform Spectrum Analyzer for Deep Space Exploration

doi: 10.11728/cjss2022.05.210611071
  • Received Date: 2021-06-10
  • Accepted Date: 2021-09-22
  • Rev Recd Date: 2022-03-03
  • Available Online: 2022-09-08
  • Chirp Transform Spectrum analyzer (CTS) has the advantages of low power consumption and high stability, and has unique advantages in deep space exploration. The 180 MHz bandwidth chirp transform spectrum analyzer mounted on the Rosetta comet detector is the only back-end heterodyne real-time spectrum analyzer that has successfully completed space missions so far. Based on the principle of chirp transform spectrum analysis, a 400 MHz bandwidth Chirp transform spectrum analyzer was designed and built by combining the digital expander technology with the Surface Acoustic Wave (SAW) compressor technology. By analyzing the compression results in the frequency band, the phase difference between the expander and the compressor was introduced as an important factor affecting the compression waveform. According to the two key parameters of the pulse compression waveform, the main lobe width and the peak side lobe ratio, the optimal matching design of the digital expander and the analog SAW compressor are completed. The compression result of the system is optimized, so that the resolution of the system reaches the theoretical value of 100 kHz. FM signal and multi-frequency signal are used to test and verify the CTS system.

     

  • loading
  • [1]
    HARTOGH P. Present and future chirp transform spectrometers for microwave remote sensing[C]//Proceedings of SPIE 3221, Sensors, Systems, and Next-Generation Satellites. London: SPIE, 1997: 328-339
    [2]
    VILLANUEVA G, HARTOGH P. The high resolution chirp transform spectrometer for the Sofia-great instrument[J]. Experimental Astronomy, 2004, 18(1/2/3): 77-91
    [3]
    范江涛, 马冠一, 万庆涛, 等. Chirp信号在天文观测中的应用[J]. 天文研究与技术, 2017, 14(4): 443-451 doi: 10.14005/j.cnki.issn1672-7673.20170921.003

    FAN Jiangtao, MA Guanyi, WAN Qingtao, et al. Application of chirp signal in astronomical observation[J]. Astronomical Research and Technology, 2017, 14(4): 443-451 doi: 10.14005/j.cnki.issn1672-7673.20170921.003
    [4]
    GULKIS S, FRERKING M, CROVISIER J, et al. MIRO: microwave instrument for Rosetta orbiter[J]. Space Science Reviews, 2007, 128(1/2/3/4): 561-597
    [5]
    HARTOGH P, BARABASH S, BEAUDIN G, et al. The submillimeter wave instrument on JUICE[C]//Proceedings of European Planetary Science Congress 2013. London: EPSC, 2013
    [6]
    KOTIRANTA M, BEAUDIN K, LIM H, et al. Optical design and analysis of the submillimeter-wave instrument on JUICE[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(6): 588-595 doi: 10.1109/TTHZ.2018.2866116
    [7]
    郑兴武, 加尔肯, 周建军. 乌鲁木齐25 m 射电望远镜首次水脉泽观测[J]. 中国科学(A辑), 2001, 44(10): 1356-1360 doi: 10.1007/BF02877025

    ZHENG Xingwu, ESIMBEK J, ZHOU Jianjun. First observations of the water masers with the Urumqi 25 m radio telescope[J]. Science in China Series A: Mathematics, 2001, 44(10): 1356-1360 doi: 10.1007/BF02877025
    [8]
    张晋, 王娜, 艾力·伊, 等. 乌鲁木齐25 m射电望远镜的单天线观测研究[J]. 天文学进展, 2000, 18(4): 271-282 doi: 10.3969/j.issn.1000-8349.2000.04.001

    ZHANG Jin, WANG Na, ALI·Y, et al. Single dish astrophysics observations at Urumqi astronomical observatory[J]. Progress in Astronomy, 2000, 18(4): 271-282 doi: 10.3969/j.issn.1000-8349.2000.04.001
    [9]
    贺小琦, 董晓龙, 朱迪, 等. 一种用于深空探测的宽带低功耗频谱仪的设计与试验[J]. 电子设计工程, 2019, 27(3): 178-183,188 doi: 10.3969/j.issn.1674-6236.2019.03.039

    HE Xiaoqi, DONG Xiaolong, ZHU Di, et al. Design and test of a low power consumption boardband spectrometer for deep space explorations[J]. Electronic Design Engineering, 2019, 27(3): 178-183,188 doi: 10.3969/j.issn.1674-6236.2019.03.039
    [10]
    王业欢. 用于深空探测的Chirp变换频谱仪关键技术研究[D]. 北京: 中国科学院大学, 2020

    WANG Yehuan. Technologies of Chirp Transform Spectrometer for Deep Space Exploration[D]. Beijing: University of Chinese Academy of Sciences, 2020
    [11]
    陈东培, 宫俊杰, 周献文, 等. 实用声表面波线性调频变换功率谱仪设计与分析的一些问题[J]. 声学学报, 1991(2): 81-90 doi: 10.15949/j.cnki.0371-0025.1991.02.001

    CHEN Dongpei, GONG Junjie, ZHOU Xianwen, et al. Problems in design and analysis of practical SAW CZT spectrometer[J]. Acta Acustica, 1991(2): 81-90 doi: 10.15949/j.cnki.0371-0025.1991.02.001
    [12]
    DING Lufei, GENG Fulu, CHEN Jianchun. Radar Principles(5 th ed) [M]. Beijing: Publishing House of Electronics Industry, 2014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article Views(155) PDF Downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return