Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
LUO Ji, XU Jiyao, WU Kun, YUAN Wei, WANG Wei, ZHANG Jiaojiao. Research on Long-distance MSTID Event Observed by Multi-instruments over Mid-latitude Regions of China (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 901-912 doi: 10.11728/cjss2022.05.210722080
Citation: LUO Ji, XU Jiyao, WU Kun, YUAN Wei, WANG Wei, ZHANG Jiaojiao. Research on Long-distance MSTID Event Observed by Multi-instruments over Mid-latitude Regions of China (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 901-912 doi: 10.11728/cjss2022.05.210722080

Research on Long-distance MSTID Event Observed by Multi-instruments over Mid-latitude Regions of China

doi: 10.11728/cjss2022.05.210722080
  • Received Date: 2021-07-21
  • Accepted Date: 2021-11-11
  • Rev Recd Date: 2022-03-14
  • Available Online: 2022-09-08
  • Ionospheric plasma irregularities have always been one of the research focuses in space physics. These irregularities usually have impacts on satellite communication, navigation as well as positioning system. It is of great importance to study the morphological features and the evolutions of these ionospheric irregularities. Medium Scale Travelling Ionospheric Disturbance (MSTID) is one kind of irregularities which usually be wave-like perturbations of the ionospheric plasma in the F-region. The evolution of mid-latitude MSTID is complicated, especially over China. In recent years, with the rapid development of the Chinese Meridian Project and the All-sky Imager Observation Network, more and more instruments have been added to the study of the ionosphere over China. This paper reports a long-distance propagating MSTID event over northeastern China on the night of 17 October 2018. The MSTID were simultaneously observed by multi-instruments, including the all-sky imager, Swarm satellites, High-frequency radar as well as Digisonde. The MSTID lasted for more than 4 hours (12:02-16:23 UT) in the field view of the airglow imager, showing typical wavelength, the phase velocity of 176.3~322.5 km, 67.0~154.1 m·s–1. The MSTID event was possibly generated at high latitude and propagated southwestward to the lower latitude, which was observed by the all-sky imagers in Yichun and Xinlong stations.

     

  • loading
  • [1]
    HUNSUCKER R D. Atmospheric gravity waves generated in the high-latitude ionosphere: a review[J]. Reviews of Geophysics, 1982, 20(2): 293-315 doi: 10.1029/RG020i002p00293
    [2]
    CANDIDO C M N, PIMENTA A A, BITTENCOURT J A, et al. Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using oi 630.0 nm emission all-sky images[J]. Geophysical Research Letters, 2008, 35(17): L17105 doi: 10.1029/2008GL035043
    [3]
    万卫星, 徐寄遥. 中国高层大气与电离层耦合研究进展[J]. 中国科学:地球科学, 2014, 44(9): 1863-1883 doi: 10.1007/s11430-014-4923-3

    WAN Weixing, XU Jiyao. Recent investigation on the coupling between the ionosphere and upper atmosphere[J]. Science China Earth Sciences, 2014, 44(9): 1863-1883 doi: 10.1007/s11430-014-4923-3
    [4]
    XU J Y, LI Q Z, SUN L C, et al. The ground‐based airglow imager network in China[M]//Upper Atmosphere Dynamics and Energetics. Hoboken: American Geophysical Union, 2021
    [5]
    KOTAKE N, OTSUKA Y, TSUGAWA T, et al. Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A4): A04306
    [6]
    KUTIEV I, MARINOV P, FIDANOVA S, et al. Modeling medium-scale TEC structures, observed by Belgian GPS receivers network[J]. Advances in Space Research, 2009, 43(11): 1732-1739 doi: 10.1016/j.asr.2008.07.021
    [7]
    XIAO S G, XIAO Z, SHI J K, et al. Observational facts in revealing a close relation between acoustic-gravity waves and midlatitude spread F[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A1): A01303
    [8]
    PARK J, LÜHR H, MIN K W, et al. Plasma density undulations in the nighttime mid-latitude F-region as observed by CHAMP, KOMPSAT-1, and DMSP F15[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72(2/3): 183-192
    [9]
    KATAMZI Z T, SMITH N D, MITCHELL C N, et al. Statistical analysis of travelling ionospheric disturbances using TEC observations from geostationary satellites[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 74: 64-80 doi: 10.1016/j.jastp.2011.10.006
    [10]
    NARAYANAN V L, SHIOKAWA K, OTSUKA Y, et al. Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: statistical characteristics and low-latitude limit[J]. Journal of Geophysical Research: Space Physics, 2014, 119(11): 9268-9282 doi: 10.1002/2014JA020368
    [11]
    MENDILLO M, BAUMGARDNER J, NOTTINGHAM D, et al. Investigations of thermospheric-ionospheric dynamics with 6300-Å images from the Arecibo observatory[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A4): 7331-7343 doi: 10.1029/96JA02786
    [12]
    KUBOTA M, SHIOKAWA K, EJIRI M K, et al. Traveling ionospheric disturbances observed in the OI 630-nm nightglow images over Japan by using a multipoint imager network during the FRONT campaign[J]. Geophysical Research Letters, 2000, 27(24): 4037-4040 doi: 10.1029/2000GL011858
    [13]
    GARCIA F J, KELLEY M C, MAKELA J J, et al. Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18407-18415 doi: 10.1029/1999JA000305
    [14]
    KELLEY M C, GARCIA F, MAKELA J, et al. Highly structured tropical airglow and TEC signatures during strong geomagnetic activity[J]. Geophysical Research Letters, 2000, 27(4): 465-468 doi: 10.1029/1999GL900598
    [15]
    SHIOKAWA K. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A1): 1052 doi: 10.1029/2002JA009491
    [16]
    OTSUKA Y. Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers[J]. Geophysical Research Letters, 2004, 31(15): L15803 doi: 10.1029/2004GL020262
    [17]
    OGAWA T, NISHITANI N, OTSUKA Y, et al. Medium‐scale traveling ionospheric disturbances observed with the superDARN Hokkaido radar, all‐sky imager, and GPS network and their relation to concurrent sporadic E irregularities[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03316
    [18]
    DING F, WAN W X, XU G R, et al. Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A9): A09327
    [19]
    宋茜, 丁锋, 万卫星, 等. 北美地区夜间中尺度电离层行进式扰动的GPS台网监测研究[J]. 地球物理学报, 2011, 54(4): 935-941 doi: 10.3969/j.issn.0001-5733.2011.04.007

    SONG Qian, DING Feng, WAN Weixing, et al. Monitoring nighttime medium-scale traveling ionospheric disturbances using the GPS network over North America[J]. Chinese Journal of Geophysics, 2011, 54(4): 935-941 doi: 10.3969/j.issn.0001-5733.2011.04.007
    [20]
    SUN L C, XU J Y, WANG W B, et al. Mesoscale field‐aligned irregularity structures (FAIs) of airglow associated with medium‐scale traveling ionospheric disturbances (MSTIDs)[J]. Journal of Geophysical Research: Space Physics, 2015, 120(11): 9839-9858 doi: 10.1002/2014JA020944
    [21]
    XIE H Y, LI G Z, ZHAO X K, et al. Coupling between E region quasi-periodic echoes and F region medium-scale traveling ionospheric disturbances at low latitudes[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027720
    [22]
    WU K, XU J Y, WANG W B, et al. Interaction of oppositely traveling medium-scale traveling ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028723
    [23]
    LUO J, XU J Y, WU K, et al. The influence of ionospheric neutral wind variations on the morphology and propagation of medium scale traveling ionospheric disturbances on 8th August 2016[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA029037
    [24]
    ZHANG J J, WANG W, WANG C, et al. First observation of ionospheric convection from the Jiamusi HF radar during a strong geomagnetic storm[J]. Earth and Space Science, 2020, 7(1): e2019EA000911
    [25]
    GARCIA F J, TAYLOR M J, KELLEY M C. Two-dimensional spectral analysis of mesospheric airglow image data[J]. Applied Optics, 1997, 36(29): 7374-7385 doi: 10.1364/AO.36.007374
    [26]
    EMMA C B, ANDREW J M, SEBASTIEN D L, et al. Determination of ionospheric parameters in real time using SuperDARN HF Radars[J]. Journal of Geophysical Research: Space Physics, 2014, 119(7): 5830-5846 doi: 10.1002/2014JA020076
    [27]
    HALDOUPIS C, FARLEY D T, SCHLEGEL K. Type-1 echoes from the mid-latitude E-Region ionosphere[J]. Annales Geophysicae, 1997, 15(7): 908-917
    [28]
    TSUNODA R T, COSGROVE R B. Coupled electrodynamics in the nighttime midlatitude ionosphere[J]. Geophysical Research Letters, 2001, 28(22): 4171-4174 doi: 10.1029/2001GL013245
    [29]
    YOKOYAMA T, HYSELL D L, OTSUKA Y, et al. Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03308
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(204) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return