| Citation: | LU Xiaoxiao, LIU Xiaoke, LI Hu, ZHENG Fu, SUN Zhibin, YU Qiang. RBF Neural Network in Electrostatic Levitation Position Control (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 952-960 doi: 10.11728/cjss2022.05.210927103 |
| [1] |
孙一宁, 王飞龙, 于强, 等. 静电悬浮条件下的材料典型热物理性质测量[J]. 材料导报, 2016, 30(S2): 253-258
SUN Yining, WANG Feilong, YU Qiang, et al. Thermophysical property measurements by electrostatic levitation in material science[J]. Materials Review, 2016, 30(S2): 253-258
|
| [2] |
WANG F L, DAI B, LIU X F, et al. Containerless heating process of a deeply undercooled metal droplet by electrostatic levitation[J]. Chinese Physics Letters, 2015, 32(11): 114101 doi: 10.1088/0256-307X/32/11/114101
|
| [3] |
MOHR M, WUNDERLICH R K, KOCH S, et al. Surface tension and viscosity of Cu50Zr50 measured by the oscillating drop technique on board the international space station[J]. Microgravity Science and Technology, 2019, 31(2): 177-184 doi: 10.1007/s12217-019-9678-1
|
| [4] |
China Manned Space. High quality domestic products, strong as the sky![EB/OL]. (2021-07-21)[2021-09-25]. http://www.cmse.gov.cn/kjkx/kjkxyjyyy/202107/t20210726_48473.html
|
| [5] |
RULISON A J, WATKINS J L, ZAMBRANO B. Electrostatic containerless processing system[J]. Review of Scientific Instruments, 1997, 68(7): 2856-2863 doi: 10.1063/1.1148208
|
| [6] |
ISHIKAWA T, KOYAMA C, PARADIS P F, et al. Densities of liquid Re, Os, and Ir, and their temperature dependence measured by an electrostatic levitator[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105305 doi: 10.1016/j.ijrmhm.2020.105305
|
| [7] |
HERLACH D. Crystal nucleation and dendrite growth of metastable phases in undercooled melts[J]. Journal of Alloys and Compounds, 2011, 509(S1): S13-S17
|
| [8] |
LEE G W, JEON S, PARK C, et al. Crystal-liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: Hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy[J]. The Journal of Chemical Thermodynamics, 2013, 63: 1-6 doi: 10.1016/j.jct.2013.03.012
|
| [9] |
HU L, WANG H P, XIE W J, et al. Electrostatic levitation under the single-axis feedback control condition[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(8): 1438-1444 doi: 10.1007/s11433-010-4068-0
|
| [10] |
ZOU Z Z, LUO X H, YU Q. Droplet image super resolution based on sparse representation and kernel regression[J]. Microgravity Science and Technology, 2018, 30(3): 321-329 doi: 10.1007/s12217-018-9597-6
|
| [11] |
陈东阳, 郭清远, 董文博, 等. 基于高速视觉的静电悬浮控制系统[J]. 光学 精密工程, 2019, 27(11): 2343-2353 doi: 10.3788/OPE.20192711.2343
CHEN Dongyang, GUO Qingyuan, DONG Wenbo, et al. Control system of electrostatic levitation based on high-speed vision[J]. Optics and Precision Engineering, 2019, 27(11): 2343-2353 doi: 10.3788/OPE.20192711.2343
|
| [12] |
NAKAMURA T, AWA Y, SHIMOJI H, et al. Control system of electrostatic levitation furnace[J]. Acta Astronautica, 2002, 50(10): 609-614 doi: 10.1016/S0094-5765(01)00219-3
|
| [13] |
MEISTER T, WERNER H, LOHOEFER G, et al. Gain-scheduled control of an electrostatic levitator[J]. Control Engineering Practice, 2003, 11(2): 117-128 doi: 10.1016/S0967-0661(02)00102-8
|
| [14] |
NUELLA I, CHENG C, CHIU M S. Adaptive PID controller design for nonlinear systems[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4877-4883
|
| [15] |
QIAO J F, LI F, YANG C L, et al. A self-organizing RBF neural network based on distance concentration immune algorithm[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(1): 276-291 doi: 10.1109/JAS.2019.1911852
|
| [16] |
郭益深, 陈力. 漂浮基姿态受控空间机械臂关节运动的自适应神经网络控制[J]. 空间科学学报, 2008, 28(2): 173-179 doi: 10.11728/cjss2008.02.173
GUO Yishen, CHEN Li. Adaptive neural network control of free-floating space manipulator with an attitude controlled base[J]. Chinese Journal of Space Science, 2008, 28(2): 173-179 doi: 10.11728/cjss2008.02.173
|
| [17] |
RAHIMZADEH H, SADEGHI M, GHASEMI-VARNAMKHASTI M, et al. On the feasibility of metal oxide gas sensor based electronic nose software modification to characterize rice ageing during storage[J]. Journal of Food Engineering, 2019, 245: 1-10 doi: 10.1016/j.jfoodeng.2018.10.001
|
| [18] |
LI Y, LIU M Y, ZHANG X J, et al. Global approximation based adaptive RBF neural network control for supercavitating vehicles[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 797-804 doi: 10.21629/JSEE.2018.04.14
|
| [19] |
MUNRO K, MILLER T H, MARTINS C P B, et al. Artificial neural network modelling of pharmaceutical residue retention times in wastewater extracts using gradient liquid chromatography-high resolution mass spectrometry data[J]. Journal of Chromatography A, 2015, 1396: 34-44 doi: 10.1016/j.chroma.2015.03.063
|
| [20] |
周扬扬, 韦韧, 王超, 等. 静电悬浮位置控制系统设计与实现[J]. 空间科学学报, 2011, 31(5): 675-681 doi: 10.11728/cjss2011.05.675
ZHOU Yangyang, WEI Ren, WANG Chao, et al. Design and implementation of electrostatic levitation position control system[J]. Chinese Journal of Space Science, 2011, 31(5): 675-681 doi: 10.11728/cjss2011.05.675
|
| [21] |
LIU N J, CAI Z H, ZHAO J, et al. Predictor-based model reference adaptive roll and yaw control of a quad-tiltrotor UAV[J]. Chinese Journal of Aeronautics, 2020, 33(1): 282-295 doi: 10.1016/j.cja.2019.08.001
|
| [22] |
李明, 封航, 张延顺. 基于UMAC的RBF神经网络PID控制[J]. 北京航空航天大学学报, 2018, 44(10): 2063-2070 doi: 10.13700/j.bh.1001-5965.2017.0777
LI Ming, FENG Hang, ZHANG Yanshun. RBF neural network tuning PID control based on UMAC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2063-2070 doi: 10.13700/j.bh.1001-5965.2017.0777
|
| [23] |
ATTARAN S M, YUSOF R, SELAMAT H. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system[J]. Applied Thermal Engineering, 2016, 99: 613-624 doi: 10.1016/j.applthermaleng.2016.01.025
|
| [24] |
SHI K J, LI B, WANG F M, et al. Research on the RBF-PID control method for the motor actuator used in a UHV GIS disconnector[J]. The Journal of Engineering, 2019, 2019(16): 2013-2017 doi: 10.1049/joe.2018.8728
|