Citation: | ZHANG Tian, TANG Hong, HE Huaiyu, LI Xiongyao, ZHOU Chuanjiao, LIU Jianzhong. Review of Comprehensive Exploitation Technology of Lunar Water Ice Resource (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 273-290 doi: 10.11728/cjss2023.02.2022-0069 |
[1] |
KUIPER G P. The Atmospheres of the Earth and Planets[M]. Chicago: University of Chicago Press, 1952
|
[2] |
LUCEY P, KOROTEV R L, GILLS J J, et al. Understanding the lunar surface and space-Moon interactions[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1): 83-219 doi: 10.2138/rmg.2006.60.2
|
[3] |
ÖPIK E J, SINGER S F. Escape of gases from the moon[J]. Journal of Geophysical Research, 1960, 65(10): 3065-3070 doi: 10.1029/JZ065i010p03065
|
[4] |
WATSON K, MURRAY B, BROWN H. On the possible presence of ice on the Moon[J]. Journal of Geophysical Research, 1961, 66(5): 1598-1600 doi: 10.1029/JZ066i005p01598
|
[5] |
WATSON K, MURRAY B C, BROWN H. The behavior of volatiles on the lunar surface[J]. Journal of Geophysical Research, 1961, 66(9): 3033-3045 doi: 10.1029/JZ066i009p03033
|
[6] |
NOZETTE S, LICHTENBERG C L, SPUDIS P, et al. The Clementine bistatic radar experiment[J]. Science, 1996, 274(5292): 1495-1498 doi: 10.1126/science.274.5292.1495
|
[7] |
STACY N J S, CAMPBELL D B, FORD P G. Arecibo radar mapping of the lunar poles: a search for ice deposits[J]. Science, 1997, 276(5318): 1527-1530 doi: 10.1126/science.276.5318.1527
|
[8] |
WEIDENSCHILLING S J. The possibility of ice on the Moon[J]. Science, 1997, 278(5335): 144-145 doi: 10.1126/science.278.5335.144
|
[9] |
FELDMAN W C, MAURICE S, BINDER A B, et al. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles[J]. Science, 1998, 281(5382): 1496-1500 doi: 10.1126/science.281.5382.1496
|
[10] |
FELDMAN W C, LAWRENCE D J, ELPHIC R C, et al. Polar hydrogen deposits on the Moon[J]. Journal of Geophysical Research: Planets, 2000, 105(E2): 4175-4195 doi: 10.1029/1999JE001129
|
[11] |
GOLDSTEIN D B, NEREM R S, BARKER E S, et al. Impacting Lunar Prospector in a cold trap to detect water ice[J]. Geophysical Research Letters, 1999, 26(12): 1653-1656 doi: 10.1029/1999GL900384
|
[12] |
CLARK R N. Detection of adsorbed water and hydroxyl on the Moon[J]. Science, 2009, 326(5952): 562-564 doi: 10.1126/science.1178105
|
[13] |
PIETERS C M, GOSWAMI J N, CLARK R N, et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1[J]. Science, 2009, 326(5952): 568-572 doi: 10.1126/science.1178658
|
[14] |
曾献棣, 唐红, 李雄耀, 等. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482 doi: 10.11867/j.issn.1001-8166.2018.05.0473
ZENG Xiandi, TANG Hong, LI Xiongyao, et al. Research review and significance of lunar water originated from solar wind[J]. Advances in Earth Science, 2018, 33(5): 473-482 doi: 10.11867/j.issn.1001-8166.2018.05.0473
|
[15] |
SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Initial results for the north pole of the Moon from Mini‐SAR, Chandrayaan‐1 mission[J]. Geophysical Research Letters, 2010, 37(6): L06204
|
[16] |
MITROFANOV I G, SANIN A B, BOYNTON W V, et al. Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND[J]. Science, 2010, 330(6003): 483-486 doi: 10.1126/science.1185696
|
[17] |
COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6003): 463-468 doi: 10.1126/science.1186986
|
[18] |
LI S, LUCEY P G, MILLIKEN R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): 8907-8912 doi: 10.1073/pnas.1802345115
|
[19] |
ARNOLD J R. Ice in the lunar polar regions[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B10): 5659-5668 doi: 10.1029/JB084iB10p05659
|
[20] |
吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5): 405-416 doi: 10.15982/j.issn.2095-7777.2019.05.001
WU Weiren, LIU Jizhong, TANG Yuhua, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5): 405-416 doi: 10.15982/j.issn.2095-7777.2019.05.001
|
[21] |
裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582
PEI Zhaoyu, LIU Jizhong, WANG Qian, et al. Overview of lunar exploration and International Lunar Research Station[J]. Chinese Science Bulletin, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582
|
[22] |
李默. 月球南极探测任务着陆区选址研究[D]. 北京: 中国地质大学(北京), 2021
LI Mo. Research on Site Selection of Landing Area for lunar South Pole Exploration Mission[D]. Beijing: China University of Geosciences (Beijing), 2021
|
[23] |
王赤, 杨帆, 韩淋, 等. 2021年空间科学热点回眸[J]. 科技导报, 2022, 40(5): 6-21
WANG Chi, YANG Fan, HAN Lin, et al. NASA’s probe first enters solar atmosphere—a review of hot topics of space science in 2021[J]. Science & Technology Review, 2022, 40(5): 6-21
|
[24] |
SMITH M, CRAIG D, HERRMANN N, et al. The Artemis program: an overview of NASA's activities to return humans to the moon[C]//Proceedings of the 2020 IEEE Aerospace Conference. Big Sky: IEEE, 2020: 1-10
|
[25] |
何成旦, 李亚胜, 温智, 等. 月表水冰探测与赋存形态研究进展[J]. 真空与低温, 2021, 27(6): 589-600 doi: 10.3969/j.issn.1006-7086.2021.06.011
HE Chengdan, LI Yasheng, WEN Zhi, et al. Research progress of lunar surface water ice detection and occurrence form[J]. Vacuum and Cryogenics, 2021, 27(6): 589-600 doi: 10.3969/j.issn.1006-7086.2021.06.011
|
[26] |
李雄耀, 魏广飞, 曾小家, 等. 极区月壤和水冰形成演化机制及物理特性研究[J]. 深空探测学报, 2022, 9(2): 123-133 doi: 10.15982/j.issn.2096-9287.2022.20210147
LI Xiongyao, WEI Guangfei, ZENG Xiaojia, et al. Review of the lunar regolith and water ice on the poles of the Moon[J]. Journal of Deep Space Exploration, 2022, 9(2): 123-133 doi: 10.15982/j.issn.2096-9287.2022.20210147
|
[27] |
JONES B M, ALEKSANDROV A, HIBBITTS K, et al. Solar wind-induced water cycle on the Moon[J]. Geophysical Research Letters, 2018, 45(20): 10959-10967
|
[28] |
STEWART B D, PIERAZZO E, GOLDSTEIN D B, et al. Simulations of a comet impact on the Moon and associated ice deposition in polar cold traps[J]. Icarus, 2011, 215(1): 1-16 doi: 10.1016/j.icarus.2011.03.014
|
[29] |
PREM P, ARTEMIEVA N A, GOLDSTEIN D B, et al. Transport of water in a transient impact-generated lunar atmosphere[J]. Icarus, 2015, 255: 148-158 doi: 10.1016/j.icarus.2014.10.017
|
[30] |
CANNON K M, BRITT D T. A geologic model for lunar ice deposits at mining scales[J]. Icarus, 2020, 347: 113778 doi: 10.1016/j.icarus.2020.113778
|
[31] |
CANNON K M, DEUTSCH A N, HEAD J W, et al. Stratigraphy of ice and ejecta deposits at the lunar poles[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088920
|
[32] |
CANNON K M, DEUTSCH A N, HEAD J W. Stratigraphy of ice and ejecta deposits at the lunar poles: updates and new insights[C]//Proceedings of the 52 nd Lunar and Planetary Science Conference. 2021, 2548: 2497
|
[33] |
SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Evidence for water ice on the Moon: results for anomalous polar craters from the LRO Mini-RF imaging radar[J]. Journal of Geophysical Research: Planets, 2013, 118(10): 2016-2029 doi: 10.1002/jgre.20156
|
[34] |
THOMSON B J, BUSSEY D B J, NEISH C D, et al. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar[J]. Geophysical Research Letters, 2012, 39(14): L14201
|
[35] |
CAMPBELL D B, CAMPBELL B A, CARTER L M, et al. No evidence for thick deposits of ice at the lunar south pole[J]. Nature, 2006, 443(7113): 835-837 doi: 10.1038/nature05167
|
[36] |
NEISH C D, BUSSEY D B J, SPUDIS P, et al. The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site[J]. Journal of Geophysical Research: Planets, 2011, 116(E1): E01005
|
[37] |
FA W Z, CAI Y Z. Circular polarization ratio characteristics of impact craters from Mini-RF observations and implications for ice detection at the polar regions of the Moon[J]. Journal of Geophysical Research: Planets, 2013, 118(8): 1582-1608 doi: 10.1002/jgre.20110
|
[38] |
FELDMAN W C, MAURICE S, LAWRENCE D J, et al. Evidence for water ice near the lunar poles[J]. Journal of Geophysical Research: Planets, 2001, 106(E10): 23231-23251 doi: 10.1029/2000JE001444
|
[39] |
CANNON K M, BRITT D T. Accessibility data set for large permanent cold traps at the lunar poles[J]. Earth and Space Science, 2020, 7(10): e2020EA001291
|
[40] |
LAWRENCE D J. A tale of two poles: toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury[J]. Journal of Geophysical Research: Planets, 2017, 122(1): 21-52 doi: 10.1002/2016JE005167
|
[41] |
LI S, MILLIKEN R E. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: distribution, abundance, and origins[J]. Science Advances, 2017, 3(9): e1701471 doi: 10.1126/sciadv.1701471
|
[42] |
BUSSEY D B J, SPUDIS P D, ROBINSON M S. Illumination conditions at the lunar South Pole[J]. Geophysical Research Letters, 1999, 26(9): 1187-1190 doi: 10.1029/1999GL900213
|
[43] |
BUSSEY D B J, LUCEY P G, STEUTEL D, et al. Permanent shadow in simple craters near the lunar poles[J]. Geophysical Research Letters, 2003, 30(6): 1278
|
[44] |
LUCHSINGER K M, CHANOVER N J. Seasons of ice: water ice migration and seasonal transient shadow at the lunar poles[J]. Journal of Geophysical Research: Planets, 2022, 127(10): e2022JE007336
|
[45] |
RUBANENKO L, VENKATRAMAN J, PAIGE D A. Thick ice deposits in shallow simple craters on the Moon and Mercury[J]. Nature Geoscience, 2019, 12(8): 597-601 doi: 10.1038/s41561-019-0405-8
|
[46] |
BROWN H M, BOYD A K, DENEVI B W, et al. Resource potential of lunar permanently shadowed regions[J]. Icarus, 2022, 377: 114874 doi: 10.1016/j.icarus.2021.114874
|
[47] |
AUSTIN A, SHERWOOD B, ELLIOTT J, et al. Robotic lunar surface operations 2[J]. Acta Astronautica, 2020, 176: 424-437 doi: 10.1016/j.actaastro.2020.06.038
|
[48] |
SOWERS G F, DREYER C B. Ice mining in lunar permanently shadowed regions[J]. New Space, 2019, 7(4): 235-244 doi: 10.1089/space.2019.0002
|
[49] |
BRISSET J, MILETICH T, METZGER P. Thermal extraction of water ice from the lunar surface-A 3 D numerical model[J]. Planetary and Space Science, 2020, 193: 105082 doi: 10.1016/j.pss.2020.105082
|
[50] |
DUKE M, GUSTAFSON R, RICE E. Mining of lunar polar ice[C]//Proceedings of the 36 th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1998
|
[51] |
GUSTAFSON R, RICE E. Lunar polar ice-Methods for mining the new resource for exploration[C]//Proceedings of the 37 th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1999
|
[52] |
KLEINHENZ J E, PAZ A. Case studies for lunar isru systems utilizing polar water[C]//ASCEND 2020. 2020: 4042
|
[53] |
WASILEWSKI T G. Lunar thermal mining: phase change interface movement, production decline and implications for systems engineering[J]. Planetary and Space Science, 2021, 199: 105199 doi: 10.1016/j.pss.2021.105199
|
[54] |
ZACNY K, INDYK S, LUCZEK K, et al. Planetary volatiles extractor (PVEx) for in situ resource utilization (ISRU)[C]//Proceedings of the 15 th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Orlando: ASCE, 2016
|
[55] |
ZACNY K, METZGER P, LUCZEK K, et al. The world is not enough (WINE): harvesting local resources for eternal exploration of space[C]//AIAA SPACE 2016. Long Beach: AIAA, 2016: 5279
|
[56] |
王超, 张晓静, 姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报, 2020, 7(3): 241-247 doi: 10.15982/j.issn.2095-7777.2020.20191029003
WANG Chao, ZHANG Xiaojing, YAO Wei. Reseach prospects of lunar polar water ice resource in-situ utilization[J]. Journal of Deep Space Exploration, 2020, 7(3): 241-247 doi: 10.15982/j.issn.2095-7777.2020.20191029003
|
[57] |
FEGLEY B JR, SWINDLE T D. Lunar volatiles: implications for lunar resource utilization[J]. Resources of Near-Earth Space, 1993: 367-426
|
[58] |
DIKOV Y P, IVANOV A V, WLOTZKA F, et al. The nature of volatiles in the lunar regolith[J]. Solar System Research, 2002, 36(1): 1-11 doi: 10.1023/A:1014297009479
|
[59] |
SCHWADRON N A, WILSON J K, LOOPER M D, et al. Signatures of volatiles in the lunar proton albedo[J]. Icarus, 2016, 273: 25-35 doi: 10.1016/j.icarus.2015.12.003
|
[60] |
IVANOV A V. Volatiles in lunar regolith samples: a survey[J]. Solar System Research, 2014, 48(2): 113-129 doi: 10.1134/S0038094614020038
|
[61] |
HOLQUIST J, PASADILLA P, BOWER C, et al. Analysis of a cold trap as a purification step for lunar water processing[C]//2020 International Conference on Environmental Systems, 2020
|
[62] |
ZHANG B X, CHUI T C. Low temperature engineering applied to lunar in‐situ resource utilization[J]. AIP Conference Proceedings, 2006, 823: 1523-1529 doi: 10.1063/1.2202576
|
[63] |
SCHLÜTER L, COWLEY A, PENNEC Y, et al. Gas purification for oxygen extraction from lunar regolith[J]. Acta Astronautica, 2021, 179: 371-381 doi: 10.1016/j.actaastro.2020.11.014
|
[64] |
HAYNES W M, LIDE D R, BRUNO T J. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2016
|
[65] |
BOUL P, LANGE K, CONGER B, et al. Distillation designs for the lunar surface[C]//Proceedings of the 40 th International Conference on Environmental Systems. Barcelona: AIAA, 2010
|
[66] |
Bart H-J, Gemmingen U V. Adsorption [M]// Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005: 1012
|
[67] |
DALLBAUMAN L A, FINN J E. Adsorption processes in spacecraft environmental control and life support systems[J]. Studies in Surface Science and Catalysis, 1999, 120: 455-471
|
[68] |
STOOKEY D J. Membranes: gas-separation applications[M]//Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005: 45
|
[69] |
KOHOUT L L. Cryogenic reactant storage for lunar base regenerative fuel cells[C]//Proceedings of the International Conference on Space Power. Cleveland: NASA, 1989
|
[70] |
HÄUSSINGER P, LOHMÜLLER R, WATSON A M. Hydrogen[M]//Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2000
|
[71] |
BOUDELLAL M. Power-to-Gas: Renewable Hydrogen Economy for the Energy Transition [M]. Berlin, Boston: De Gruyter, 2018
|
[72] |
FORZATTI P, LIETTI L. Recent advances in De‐NOxing catalysis for stationary applications[J]. Heterogeneous Chemistry Reviews, 1996, 3(1): 33-51 doi: 10.1002/(SICI)1234-985X(199603)3:1<33::AID-HCR54>3.0.CO;2-R
|
[73] |
O’MAHONY A M, DICKINSON E J F, ALDOUS L, et al. Electrochemical oxidation of hydrogen sulfide at platinum electrodes in room temperature ionic liquids: evidence for significant accumulation of H2S at the Pt/1-butyl-3-methylimidazolium trifluoromethylsulfonate interface[J]. The Journal of Physical Chemistry C, 2009, 113(25): 10997-11002 doi: 10.1021/jp902488e
|
[74] |
NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2337-2354 doi: 10.1016/j.ijhydene.2008.02.048
|
[75] |
MOÇOTEGUY P, BRISSE A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2013, 38(36): 15887-15902 doi: 10.1016/j.ijhydene.2013.09.045
|
[76] |
HECHT M H, HOFFMAN J A, TEAM M. The Mars oxygen ISRU experiment (MOXIE) on the Mars 2020 rover[C]//Proceedings of the 3 rd International Workshop on Instrumentation for Planetary Mission. 2016, 1980: 4130
|
[77] |
HECHT M, HOFFMAN J, RAPP D, et al. Mars oxygen ISRU experiment (MOXIE)[J]. Space Science Reviews, 2021, 217(1): 9 doi: 10.1007/s11214-020-00782-8
|
[78] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38 doi: 10.1038/238037a0
|
[79] |
KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278 doi: 10.1039/B800489G
|
[80] |
杨亚辉, 陈启元, 尹周澜, 等. 光催化分解水的研究进展[J]. 化学进展, 2005, 17(04): 631-642 doi: 10.3321/j.issn:1005-281X.2005.04.008
YANG Yahui, CHEN Qiyuan, YIN Zhoulan, et al. Progress in research of photocatalytic water splitting[J]. Progress in Chenistry, 2005, 17(04): 631-642 doi: 10.3321/j.issn:1005-281X.2005.04.008
|
[81] |
李仁贵, 李灿. 太阳能光催化分解水研究进展[J]. 科技导报, 2020, 38(23): 49-61 doi: 10.3981/j.issn.1000-7857.2020.23.006
LI Rengui, LI Can. Research status and development of photocatalytic water splitting for solar energy conversion[J]. Science & Technology Review, 2020, 38(23): 49-61 doi: 10.3981/j.issn.1000-7857.2020.23.006
|
[82] |
欧阳自远, 邹永廖, 李春来, 等. 月球某些资源的开发利用前景[J]. 地球科学—中国地质大学学报, 2002, 27(5): 498-503
OUYANG Ziyuan, ZOU Yongliao, LI Chunlai, et al. Prospect of Exploration and Utilization of Some Lunar Resources[J]. Earth Science-Journal of China University of Geosciences, 2002, 27(5): 498-503
|
[83] |
KORNUTA D, ABBUD-MADRID A, ATKINSON J, et al. Commercial lunar propellant architecture: a collaborative study of lunar propellant production[J]. Reach, 2019, 13: 100026 doi: 10.1016/j.reach.2019.100026
|
[84] |
NASA. NASA identifies Candidate regions for landing next Americans on moon[OL]. (2022-08-19)[2023-03-03]. https://www.nasa.gov/press-release/nasa-identifies-candidate-regions-for-landing-next-americans-on-moon
|
[85] |
张熇, 杜宇, 李飞, 等. 月球南极探测着陆工程选址建议[J]. 深空探测学报, 2020, 7(3): 232-240 doi: 10.15982/j.issn.2095-7777.2020.20191003002
ZHANG He, DU Yu, LI Fei, et al. Proposals for sites selection of soft landing on lunar south polar region[J]. Journal of Deep Space Exploration, 2020, 7(3): 232-240 doi: 10.15982/j.issn.2095-7777.2020.20191003002
|
[86] |
肖龙, 乔乐, 肖智勇, 等. 月球着陆探测值得关注的主要科学问题及着陆区选址建议[J]. 中国科学: 物理学·力学·天文学, 2016, 46(2): 3-24
XIAO Long, QIAO Le, XIAO Zhiyong, et al. Major scientific objectives and candidate landing sites suggested for future lunar explorations[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(2): 3-24
|