Citation: | LEI Lei, CUI Yanmei, ZHONG Qiuzhen, SHI Liqin. Solar Full-disk Flare Forecasting Model Based on 10.7 cm Solar Radio Flux (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 212-218 doi: 10.11728/cjss2023.02.220219018 |
[1] |
SHARP L E, HARRIS D E. Enhanced interplanetary scintillations associated with solar flares[J]. Nature, 1967, 213(5074): 377-378 doi: 10.1038/213377a0
|
[2] |
YASHIRO S, AKIYAMA S, GOPALSWAMY N, et al. Different power-law indices in the frequency distributions of flares with and without coronal mass ejections[J]. The Astrophysical Journal, 2006, 650(2): L143-L146 doi: 10.1086/508876
|
[3] |
NITTA N V, MULLIGAN T, KILPUA E K J, et al. Understanding the origins of problem geomagnetic storms associated with “stealth” coronal mass ejections[J]. Space Science Reviews, 2021, 217(8): 82 doi: 10.1007/s11214-021-00857-0
|
[4] |
HUANG X, WANG H N, XU L, et al. Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms[J]. The Astrophysical Journal, 2018, 856(1): 7 doi: 10.3847/1538-4357/aaae00
|
[5] |
LEKA K D, PARK S H, KUSANO K, et al. A comparison of flare forecasting methods. II. benchmarks, metrics, and performance results for operational solar flare forecasting systems[J]. The Astrophysical Journal Supplement Series, 2019, 243(2): 36 doi: 10.3847/1538-4365/ab2e12
|
[6] |
PARK E, MOON Y J, SHIN S, et al. Application of the deep convolutional neural network to the forecast of solar flare occurrence using full-disk solar magnetograms[J]. The Astrophysical Journal, 2018, 869(2): 91 doi: 10.3847/1538-4357/aaed40
|
[7] |
TAPPING K F, DETRACEY B. The origin of the 10.7 cm flux[J]. Solar Physics, 1990, 127(2): 321-332 doi: 10.1007/BF00152171
|
[8] |
TAPPING K F. The 10.7 cm solar radio flux (F10.7)[J]. Space Weather, 2013, 11(7): 394-406 doi: 10.1002/swe.20064
|