Volume 43 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
ZHAO Xueliang, WANG Hao, CHEN Zhenghan, YANG Jianzhong, XU Zhaodong. Review on van der Waals Interaction between Lunar Soil Particles (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 291-301 doi: 10.11728/cjss2023.02.220406037
Citation: ZHAO Xueliang, WANG Hao, CHEN Zhenghan, YANG Jianzhong, XU Zhaodong. Review on van der Waals Interaction between Lunar Soil Particles (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 291-301 doi: 10.11728/cjss2023.02.220406037

Review on van der Waals Interaction between Lunar Soil Particles

doi: 10.11728/cjss2023.02.220406037 cstr: 32142.14.cjss2023.02.220406037
  • Received Date: 2022-04-02
  • Accepted Date: 2022-09-06
  • Rev Recd Date: 2022-10-18
  • Available Online: 2023-03-27
  • With the successful completion of the three-phase tasks of “orbiting”, “landing” and “returning” of China’s Chang’E project, it is of great significance to study the mechanical properties of lunar soil, which is the most fundamental requirement for the lunar basement construction and other lunar engineering projects. The characteristics of high vacuum, low gravity, and strong radiation in the environment of the lunar surface make the lunar regolith different from the terrestrial sands. One of the main differences between lunar regolith and terrestrial sands is that lunar regolith is slightly cohesive, while terrestrial sands are usually non-cohesive. This difference can be attributed to the van der Waals interaction between lunar soil particles. This paper summarizes the current research on van der Waals force, and analyzes the existing research from four aspects: the calculation of van der Waals force between molecules / atoms, the retardation of van der Waals force in long-range, the calculation of van der Waals force between macro bodies under ideal hypothesis conditions and the calculation of van der Waals force under realistic conditions. At last, shortcomings of the current research on van der Waals force between macro bodies are given. The purpose of this paper is to provide a relatively thorough and theoretical reference for the further study of van der Waals force between lunar soil particles.

     

  • loading
  • [1]
    CHE X C, NEMCHIN A, LIU D Y, et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’E-5[J]. Science, 2021, 374(6569): 887-890 doi: 10.1126/science.abl7957
    [2]
    KROTIKOV V D, TROITSKI V S. Radio emission and nature of the moon[J]. Soviet Physics Uspekhi, 1964, 6(6): 841-871 doi: 10.1070/PU1964v006n06ABEH003615
    [3]
    MANKA R H. Plasma and potential at the lunar surface[C]//Proceedings of the 6 th Eslab Symposium. Held at Noordwijk: Springer, 1973
    [4]
    STUBBS T J, VONDRAK R R, FARRELL W M. A dynamic fountain model for lunar dust[J]. Advances in Space Research, 2006, 37(1): 59-66 doi: 10.1016/j.asr.2005.04.048
    [5]
    WALBRIDGE E. Lunar photoelectron layer[J]. Journal of Geophysical Research, 1973, 78(19): 3668-3687 doi: 10.1029/JA078i019p03668
    [6]
    PERKO H A, NELSON J D, SADEH W Z. Surface cleanliness effect on lunar soil shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 371-383 doi: 10.1061/(ASCE)1090-0241(2001)127:4(371)
    [7]
    HEYWOOD H. Particle size and shape distribution for lunar fines sample 12057, 72[J]. Proceedings of Lunar and Planetary Science Conference, 1971, 2: 1989
    [8]
    MCKAY D S, HEIKEN G H, TAYLOR R M, et al. Apollo 14 soils: size distribution and particle types[J]. Proceedings of Lunar and Planetary Science Conference, 1972, 3: 983
    [9]
    郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004(4): 14-19 doi: 10.19719/j.cnki.1001-6872.2004.04.003

    ZHENG Yongchun, OUYANG Ziyuan, WANG Shijie, et al. Physical and mechanical properties of lunar regolith[J]. Journal of Mineralogy and Petrology, 2004(4): 14-19 doi: 10.19719/j.cnki.1001-6872.2004.04.003
    [10]
    MITCHELL J K, HOUSTON W N, SCOTT R F, et al. Mechanical properties of lunar soil: density, porosity, cohesion and angle of internal friction[J]. Proceedings Lunar and Planetary Science Conference, 1972, 3: 3235
    [11]
    柳冠青. 范德华力和静电力下的细颗粒离散动力学研究[D]. 北京: 清华大学, 2011

    LIU Guanqing. Discrete Element Methods of Fine Particle Dynamics in Presence of van der Waals and Electrostatic Forces[D]. Beijing: Tsinghua University, 2011
    [12]
    DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326 doi: 10.1016/0021-9797(75)90018-1
    [13]
    RIMAI D S, DEMEJO L P, BOWEN R C. Surface-force-induced deformations of monodisperse polystyrene spheres on planar silicon substrates[J]. Journal of Applied Physics, 1990, 68(12): 6234-6240 doi: 10.1063/1.346888
    [14]
    COOPER K, OHLER N, GUPTA A, et al. Analysis of contact interactions between a rough deformable colloid and a smooth substrate[J]. Journal of Colloid and Interface Science, 2000, 222(1): 63-74 doi: 10.1006/jcis.1999.6561
    [15]
    BATURENKO D Y, CHERNOBEREZHSKII Y M, LORENTSSON A V, et al. Effect of pH on the aggregation stability of microcrystalline cellulose dispersions in aqueous 0.1 M NaCl solutions[J]. Colloid Journal, 2003, 65(6): 666-671 doi: 10.1023/B:COLL.0000009107.51130.a6
    [16]
    DELRIO F W, DE BOER M P, KNAPP J A, et al. The role of van der Waals forces in adhesion of micromachined surfaces[J]. Nature Materials, 2005, 4(8): 629-634 doi: 10.1038/nmat1431
    [17]
    HOANG T V, WU L, PAQUAY S, et al. A computational stochastic multiscale methodology for MEMS structures involving adhesive contact[J]. Tribology International, 2017, 110: 401-425 doi: 10.1016/j.triboint.2016.10.007
    [18]
    ZHANG H W, WANG J B, YE H F, et al. Parametric variational principle and quadratic programming method for van der Waals force simulation of parallel and cross nanotubes[J]. International Journal of Solids and Structures, 2007, 44(9): 2783-2801 doi: 10.1016/j.ijsolstr.2006.08.025
    [19]
    LU W B, LIU B, WU J, et al. Continuum modeling of van der Waals interactions between carbon nanotube walls[J]. Applied Physics Letters, 2009, 94(10): 101917 doi: 10.1063/1.3099023
    [20]
    LEITE F L, BUENO C C, DA RÓZ A L, et al. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy[J]. International Journal of Molecular Sciences, 2012, 13(10): 12773-12856
    [21]
    宋天佑, 程鹏, 徐家宁, 等. 无机化学(第4版)[M]. 北京: 高等教育出版社, 2019: 227-228

    SONG Tianyou, CHNEG Peng, XU Jianing, et al. Inorganic Chemistry(4 th ed)[M]. Beijing: Higher Education Press, 2019: 227-228
    [22]
    LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5): 461-482 doi: 10.1088/0959-5309/43/5/301
    [23]
    EISENSCHITZ R, LONDON F. Über das verhältnis der van der waalsschen kräfte zu den homöopolaren bindungskräften[J]. Zeitschrift für Physik, 1930, 60(7): 491-527
    [24]
    LONDON F. Zur theorie und systematik der molekularkräfte[J]. Zeitschrift für Physik, 1930, 63(3): 245-279
    [25]
    WILSON A L, POPELIER P L A. Exponential relationships capturing atomistic short-range repulsion from the interacting quantum atoms (IQA) method[J]. The Journal of Physical Chemistry A, 2016, 120(48): 9647-9659 doi: 10.1021/acs.jpca.6b10295
    [26]
    BUCKINGHAM R A. The classical equation of state of gaseous helium, neon and argon[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1938, 168(933): 264-283
    [27]
    WU X W, BROOKS B R. A double exponential potential for van der Waals interaction[J]. AIP Advances, 2019, 9(6): 065304 doi: 10.1063/1.5107505
    [28]
    BUTT H J, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152
    [29]
    CASIMIR H B G, POLDER D. The influence of retardation on the London-van der Waals forces[J]. Physical Review, 1948, 73: 360-372 doi: 10.1103/PhysRev.73.360
    [30]
    CASIMIR H B G. On the attraction between two perfectly conducting plates[J]. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 1948, 51: 793
    [31]
    苗兵. 卡西米尔力[J]. 物理学报, 2020, 69(8): 080505 doi: 10.7498/aps.69.20200450

    MIAO Bing. Casimir force[J]. Acta Physica Sinica, 2020, 69(8): 080505 doi: 10.7498/aps.69.20200450
    [32]
    LIN W H, ZHAO Y P. Nonlinear behavior for nanoscale electrostatic actuators with Casimir force[J]. Chaos, Solitons & Fractals, 2005, 23(5): 1777-1785
    [33]
    ZHAO Y P, WANG L S, YU T X. Mechanics of adhesion in MEMS—a review[J]. Journal of Adhesion Science and Technology, 2003, 17(4): 519-546 doi: 10.1163/15685610360554393
    [34]
    DOWLATI S, REZAZADEH G. A new approach to the evaluation of Casimir and van der Waals forces in the transition region[J]. Chinese Journal of Physics, 2018, 56(3): 1133-1146 doi: 10.1016/j.cjph.2018.04.006
    [35]
    HAMAKER H C. The London—van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072 doi: 10.1016/S0031-8914(37)80203-7
    [36]
    LIFSHITZ E M. The theory of molecular attractive forces between solids[J]. Soviet Physics-JETP, 1956, 2: 329-349
    [37]
    ISRAELACHVILI J N. Intermolecular and Surface Forces[M]. 3 rd ed. Cambridge: Elsevier, 2011
    [38]
    SOKOLOV I Y, HENDERSON G S, WICKS F J. The contrast mechanism for true atomic resolution by AFM in non-contact mode: quasi-non-contact mode?[J]. Surface Science, 1997, 381(1): L558-L562 doi: 10.1016/S0039-6028(97)00058-7
    [39]
    WANG H Y, HU M, LIU N, et al. Multi-scale analysis of AFM tip and surface interactions[J]. Chemical Engineering Science, 2007, 62(13): 3589-3594 doi: 10.1016/j.ces.2006.11.060
    [40]
    NINHAM B W, PARSEGIAN V A. van der Waals Forces across Triple‐Layer Films[J]. The Journal of Chemical Physics, 1970, 52(9): 4578-4587 doi: 10.1063/1.1673689
    [41]
    FOSTER A S. Theoretical Modelling of Non-Contact Atomic Force Microscopy on Insulators[D]. London: University College London, 2000
    [42]
    JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116 doi: 10.1016/j.compgeo.2013.07.006
    [43]
    钟世英. 模拟月壤力学特性及软着陆足垫动力响应研究[D]. 杭州: 浙江大学, 2012

    ZHONG Shiying. Study on Mechanical Behaviors of Lunar Soil Simulant and Footpad Dynamic Response in Soft Landing[D]. Hangzhou: Zhejiang University, 2012
    [44]
    CHANG C S, HICHER P Y. Model for granular materials with surface energy forces[J]. Journal of Aerospace Engineering, 2009, 22(1): 43-52 doi: 10.1061/(ASCE)0893-1321(2009)22:1(43)
    [45]
    JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society A:Mathematical, and Physical Sciences, 1971, 324(1558): 301-313
    [46]
    MULLER V M, YUSHCHENKO V S, DERJAGUIN B V. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane[J]. Journal of Colloid and Interface Science, 1980, 77(1): 91-101 doi: 10.1016/0021-9797(80)90419-1
    [47]
    PARTELI E J R, SCHMIDT J, BLÜMEL C, et al. Attractive particle interaction forces and packing density of fine glass powders[J]. Scientific Reports, 2014, 4(1): 6227 doi: 10.1038/srep06227
    [48]
    TABOR D. Surface forces and surface interactions[J]. Journal of Colloid and Interface Science, 1977, 58(1): 2-13 doi: 10.1016/0021-9797(77)90366-6
    [49]
    RUMPF H. Particle Technology[M]. London: Springer Science & Business Media , 2012
    [50]
    RABINOVICH Y I, ADLER J J, ATA A, et al. Adhesion between nanoscale rough surfaces: I. Role of asperity geometry[J]. Journal of Colloid and Interface Science, 2000, 232(1): 10-16 doi: 10.1006/jcis.2000.7167
    [51]
    BRAMBILLA S, SPECKART S, BROWN M J. Adhesion and aerodynamic forces for the resuspension of non-spherical particles in outdoor environments[J]. Journal of Aerosol Science, 2017, 112: 52-67 doi: 10.1016/j.jaerosci.2017.07.006
    [52]
    FANG S J, HAPLEPETE S, CHEN W, et al. Analyzing atomic force microscopy images using spectral methods[J]. Journal of Applied Physics, 1997, 82(12): 5891-5898 doi: 10.1063/1.366489
    [53]
    LAMARCHE C Q, LEADLEY S, LIU P Y, et al. Method of quantifying surface roughness for accurate adhesive force predictions[J]. Chemical Engineering Science, 2017, 158: 140-153 doi: 10.1016/j.ces.2016.09.024
    [54]
    YOU S M, WAN M P. Mathematical models for the van der Waals force and capillary force between a rough particle and surface[J]. Langmuir, 2013, 29(29): 9104-9117 doi: 10.1021/la401516m
    [55]
    COOPER K, GUPTA A, BEAUDOIN S. Simulation of the adhesion of particles to surfaces[J]. Journal of Colloid and Interface Science, 2001, 234(2): 284-292 doi: 10.1006/jcis.2000.7276
    [56]
    EICHENLAUB S, GELB A, BEAUDOIN S. Roughness models for particle adhesion[J]. Journal of Colloid and Interface Science, 2004, 280(2): 289-298 doi: 10.1016/j.jcis.2004.08.017
    [57]
    JAISWAL R P, BEAUDOIN S P. Approximate scheme for calculating van der Waals interactions between finite cylindrical volume elements[J]. Langmuir, 2012, 28(22): 8359-8370 doi: 10.1021/la203987q
    [58]
    申志福, 高峰, 蒋明镜, 等. 黏土片与球状颗粒间范德华作用的简便计算方法[J]. 岩土工程学报, 2021, 43(12): 776-782

    SHEN Zhifu, GAO Feng, JIANG Mingjing, et al. An easy method to calculate van der Waals interaction between clay plate and spherical particle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 776-782
    [59]
    PRIYE A, MARLOW W H. Computations of Lifshitz-van der Waals interaction energies between irregular particles and surfaces at all separations for resuspension modelling[J]. Journal of Physics D:Applied Physics, 2013, 46(42): 425306 doi: 10.1088/0022-3727/46/42/425306
    [60]
    JAISWAL R P, KUMAR G, KILROY C M, et al. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description[J]. Langmuir, 2009, 25(18): 10612-10623 doi: 10.1021/la804275m
    [61]
    MRNKA M. Random Gaussian rough surfaces for full-wave electromagnetic simulations[C]//Proceedings of 2017 Conference on Microwave Techniques. Brno: IEEE, 2017: 1-4
    [62]
    WILSON R, DINI D, VAN WACHEM B. The influence of surface roughness and adhesion on particle rolling[J]. Powder Technology, 2017, 312: 321-333 doi: 10.1016/j.powtec.2017.01.080
    [63]
    RUSH M N, BRAMBILLA S, SPECKART S, et al. Glass-particle adhesion-force-distribution on clean (laboratory) and contaminated (outdoor) surfaces[J]. Journal of Aerosol Science, 2018, 123: 231-244 doi: 10.1016/j.jaerosci.2018.06.002
    [64]
    PENG M, HAN X, XIAO G Z, et al. Spherical volume elements scheme for calculating van der Waals force between irregular particles and rough surfaces[J]. Chinese Journal of Physics, 2021, 72: 645-654 doi: 10.1016/j.cjph.2021.01.016
    [65]
    PETEAN P G C, AGUIAR M L. Determining the adhesion force between particles and rough surfaces[J]. Powder Technology, 2015, 274: 67-76 doi: 10.1016/j.powtec.2014.12.047
    [66]
    郑敏, 蒋明镜, 申志福. 简化接触模型的月壤离散元数值分析[J]. 岩土力学, 2011, 32(S1): 766-771 doi: 10.16285/j.rsm.2011.s1.002

    ZHENG Min, JIANG Mingjing, SHEN Zhifu. Discrete element numerical analysis of lunar soil with a simplified contact model[J]. Rock and Soil Mechanics, 2011, 32(S1): 766-771 doi: 10.16285/j.rsm.2011.s1.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article Views(1030) PDF Downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return