Citation: | JIANG Kangning, ZHOU Hai, BIAN Chunjiang, WANG Ling. Hardware Acceleration of YOLOv5s Network Model Based on Aerospace-grade FPGA (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 950-962 doi: 10.11728/cjss2023.05.2022-0044 |
[1] |
ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514 doi: 10.1016/j.dsp.2022.103514
|
[2] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90 doi: 10.1145/3065386
|
[3] |
HUANG M Y, XU Y, QIAN L X, et al. A bridge neural network-based optical-SAR image joint intelligent interpretation framework[J]. Space: Science & Technology, 2021, 2021: 9841456
|
[4] |
KONG T, SUN F C, LIU H P, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398 doi: 10.1109/TIP.2020.3002345
|
[5] |
XU Y C, FU M T, WANG Q M, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452-1459 doi: 10.1109/TPAMI.2020.2974745
|
[6] |
LIU Z, CAI Y F, WANG H, et al. Robust target recognition and tracking of self-driving cars with radar and camera information fusion under severe weather conditions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6640-6653 doi: 10.1109/TITS.2021.3059674
|
[7] |
SINGH B, LI H D, SHARMA A, et al. R-FCN-3000 at 30 fps: Decoupling detection and classification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1081-1090
|
[8] |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988
|
[9] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[C]//14 th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37
|
[10] |
LI Z G, WANG J T. An improved algorithm for deep learning YOLO network based on Xilinx ZYNQ FPGA[C]//2020 International Conference on Culture-oriented Science & Technology (ICCST). Beijing: IEEE, 2020: 447-451
|
[11] |
WANG Z X, XU K, WU S X, et al. Sparse-YOLO: Hardware/software Co-design of An FPGA accelerator for YOLOv2[J]. IEEE Access, 2020, 8: 116569-116585 doi: 10.1109/ACCESS.2020.3004198
|
[12] |
WANG J, GU S S. FPGA implementation of object detection accelerator based on Vitis-AI[C]//2021 11 th International Conference on Information Science and Technology (ICIST). Chengdu: IEEE, 2021: 571-577
|
[13] |
CAI Y F, LUAN T Y, GAO H B, et al. YOLOv4-5 D: An effective and efficient object detector for autonomous driving[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 4503613
|
[14] |
谭显东, 彭辉. 改进YOLOv5的SAR图像舰船目标检测[J]. 计算机工程与应用, 2022, 58(4): 247-254 doi: 10.3778/j.issn.1002-8331.2108-0308
TAN Xiandong, PENG Hui. Improved YOLOv5 ship target detection in SAR image[J]. Computer Engineering and Applications, 2022, 58(4): 247-254 doi: 10.3778/j.issn.1002-8331.2108-0308
|
[15] |
GAREA A S, HERAS D B, ARGÜELLO F. Caffe CNN-based classification of hyperspectral images on GPU[J]. The Journal of Supercomputing, 2019, 75(3): 1065-1077 doi: 10.1007/s11227-018-2300-2
|
[16] |
ZHANG J M, CHENG L F, LI C F, et al. A low-latency FPGA implementation for real-time object detection[C]//2021 IEEE International Symposium on Circuits and Systems (ISCAS). Daegu: IEEE, 2021: 1-5
|
[17] |
BI F H, YANG J. Target detection system design and FPGA implementation based on YOLO v2 algorithm[C]//2019 3 rd International Conference on Imaging, Signal Processing and Communication (ICISPC). Singapore: IEEE, 2019: 10-14
|
[18] |
ZHANG S G, CAO J, ZHANG Q, et al. An FPGA-based reconfigurable CNN accelerator for YOLO[C]//2020 IEEE 3 rd International Conference on Electronics Technology (ICET). Chengdu: IEEE, 2020: 74-78
|
[19] |
NGUYEN D T, NGUYEN T N, KIM H, et al. A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(8): 1861-1873 doi: 10.1109/TVLSI.2019.2905242
|
[20] |
陈浩敏, 姚森敬, 席禹, 等. YOLOv3-tiny的硬件加速设计及FPGA实现[J]. 计算机工程与科学, 2021, 43(12): 2139-2149 doi: 10.3969/j.issn.1007-130X.2021.12.007
CHEN Haomin, YAO Senjing, XI Yu, et al. Design and FPGA implementation of YOLOv3-tiny hardware acceleration[J]. Computer Engineering and Science, 2021, 43(12): 2139-2149 doi: 10.3969/j.issn.1007-130X.2021.12.007
|
[21] |
周旗开, 张伟, 李东锦, 等. 基于改进YOLOv5s的光学遥感图像舰船分类检测方法[J]. 激光与光电子学进展, 2022, 59(16): 1628008 doi: 10.3788/LOP202259.1628008
ZHOU Qikai, ZHANG Wei, LI Dongjin, et al. Ship classification and detection method for optical remote sensing images based on improved YOLOv5s[J]. Laser and Optoelectronics Progress, 2022, 59(16): 1628008 doi: 10.3788/LOP202259.1628008
|
[22] |
周海, 侯晴宇, 卞春江, 等. 一种FPGA实现的复杂背景红外小目标检测网络[J]. 北京航空航天大学学报, 2023, 49(2): 295-310 doi: 10.13700/j.bh.1001-5965.2021.0221
ZHOU Hai, HOU Qingyu, BIAN Chunjiang, et al. An infrared small target detection network under various complex backgrounds realized on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 295-310 doi: 10.13700/j.bh.1001-5965.2021.0221
|
[23] |
DODD P E, SHANEYFELT M R, SCHWANK J R, et al. Current and future challenges in radiation effects on CMOS electronics[J]. IEEE Transactions on Nuclear Science, 2010, 57(4): 1747-1763 doi: 10.1109/TNS.2010.2042613
|
[24] |
BINDER D, SMITH E C, HOLMAN A B. Satellite anomalies from galactic cosmic rays[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2675-2680 doi: 10.1109/TNS.1975.4328188
|
[25] |
胡孔阳, 胡海生, 刘小明. 三模冗余在高性能抗辐射DSP中的应用[J]. 微电子学与计算机, 2019, 36(3): 58-60
HU Kongyang, HU Haisheng, LIU Xiaoming. The application of TMR on the high performance and anti radiation DSP[J]. Microelectronics & Computer, 2019, 36(3): 58-60
|
[26] |
ZHANG X F, WANG J S, ZHU C, et al. DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs[C]//2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). San Diego: IEEE, 2018: 1-8
|