Citation: | ZHAO Yuwei, SU Ju. Satellite Anomaly Detection Method Based on Parameter Adaptive Optimization Clustering (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 927-937 doi: 10.11728/cjss2023.05.2022-0054 |
[1] |
PAN D W, LIU D T, ZHOU J, et al. Anomaly detection for satellite power subsystem with associated rules based on Kernel Principal Component Analysis[J]. Microelectronics Reliability, 2015, 55(9/10): 2082-2086
|
[2] |
ZHENG L, GUANG J, TANG S H. Fluctuation feature extraction of satellite telemetry data and on-orbit anomaly detection[C]//2016 Prognostics and System Health Management Conference. Chengdu: IEEE, 2017: 1-5
|
[3] |
赵佳, 吕弘, 刘宝, 等. 基于模糊Petri网的卫星导航接收系统故障诊断[J]. 测试技术学报, 2017, 31(5): 438-442
ZHAO Jia, LV Hong, LIU Bao, et al. Fault diagnosis for GNSS receiver based on fuzzy Petri Net[J]. Journal of Test and Measurement Technology, 2017, 31(5): 438-442
|
[4] |
张怀峰, 江婧, 张香燕, 等. 面向卫星电源系统的一种新颖异常检测方法[J]. 宇航学报, 2019, 40(12): 1468-1477 doi: 10.3873/j.issn.1000-1328.2019.12.011
ZHANG Huaifeng, JIANG Jing, ZHANG Xiangyan, et al. Novel anomaly detection method for satellite power system[J]. Journal of Astronautics, 2019, 40(12): 1468-1477 doi: 10.3873/j.issn.1000-1328.2019.12.011
|
[5] |
李钰骙, 李虎, 胡钛. 基于LightGBM的HXMT在轨运行模式监测算法[J]. 空间科学学报, 2020, 40(1): 109-116 doi: 10.11728/cjss2020.01.109
LI Yukui, LI Hu, HU Tai. In-orbit operational pattern monitoring algorithms based on LightGBM for Hard X-ray Modulation Telescope Satellite[J]. Chinese Journal of Space Science, 2020, 40(1): 109-116 doi: 10.11728/cjss2020.01.109
|
[6] |
李虎, 郭国航, 胡钛, 等. 遥测参数数据载荷状态判别集成学习方法[J]. 国防科技大学学报, 2021, 43(6): 33-40
LI Hu, GUO Guohang, HU Tai, et al. Ensemble learning for state recognition of payload from telemetry data[J]. Journal of National University of Defense Technology, 2021, 43(6): 33-40
|
[7] |
CASAS P, MAZEL J, OWEZARSKI P. UNADA: unsupervised network anomaly detection using sub-space outliers ranking[C]//Proceedings of the 10 th International Conference on Research in Networking. Valencia: Springer, 2011: 40-51
|
[8] |
陆春光, 叶方彬, 赵羚, 等. 基于密度峰值聚类的电力大数据异常值检测算法[J]. 科学技术与工程, 2020, 20(2): 654-658
LU Chunguang, YE Fangbin, ZHAO Ling, et al. Abnormal value detection of large power data based on density peak clustering[J]. Science Technology and Engineering, 2020, 20(2): 654-658
|
[9] |
WANG H, PENG M J, YU Y, et al. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants[J]. Annals of Nuclear Energy, 2021, 150: 107786 doi: 10.1016/j.anucene.2020.107786
|
[10] |
李楠, 强懿耕, 樊瑞, 等. 基于异常因子的航空器飞行轨迹异常检测研究[J]. 安全与环境学报, 2021, 21(2): 643-648
LI Nan, QIANG Yigeng, FAN Rui, et al. On the abnormal detection of the aircraft flight trajectory based on the abnormal factor statistics[J]. Journal of Safety and Environment, 2021, 21(2): 643-648
|
[11] |
彭喜元, 庞景月, 彭宇, 等. 航天器遥测数据异常检测综述[J]. 仪器仪表学报, 2016, 37(9): 1929-1945
PENG Xiyuan, PANG Jingyue, PENG Yu, et al. Review on anomaly detection of spacecraft telemetry data[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 1929-1945
|
[12] |
康旭. 时序遥测数据异常检测方法研究[D]. 南京: 南京航空航天大学, 2018
KANG Xu. Anomaly Detection Method for Sequential Telemetry Data[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018
|
[13] |
ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: An efficient data clustering method for very large databases[J]. ACM SIGMOD Record, 1999, 25(2): 103-114
|
[14] |
陈婧文. 基于链接改进的BIRCH算法的研究与应用[D]. 长春: 吉林大学, 2019
CHEN Jingwen. Research and Application of an Improved BIRCH Algorithm Based on Link[D]. Changchun: Jilin University, 2019
|
[15] |
ELSAYED S, HAMZA N, SARKER R. Testing united multi-operator evolutionary algorithms-II on single objective optimization problems[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016: 2966-2973
|
[16] |
ELSAYED S M, SARKER R A, ESSAM D L, et al. Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization[C]//2014 IEEE Congress on Evolutionary Computation (CEC). Beijing: IEEE, 2014: 1650-1657
|
[17] |
HRUSCHKA E R, CAMPELLO R J G B, FREITAS A A, et al. A survey of evolutionary algorithms for clustering[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(2): 133-155 doi: 10.1109/TSMCC.2008.2007252
|