Volume 43 Issue 5
Nov.  2023
Turn off MathJax
Article Contents
DONG Bowen, YU Xizheng, LI Mingtao, WANG Kaiduo, WANG Youliang. Orbit Design Optimization Method for an Asteroid Flyby Mission from DRO (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 864-874 doi: 10.11728/cjss2023.05.2023-0011
Citation: DONG Bowen, YU Xizheng, LI Mingtao, WANG Kaiduo, WANG Youliang. Orbit Design Optimization Method for an Asteroid Flyby Mission from DRO (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 864-874 doi: 10.11728/cjss2023.05.2023-0011

Orbit Design Optimization Method for an Asteroid Flyby Mission from DRO

doi: 10.11728/cjss2023.05.2023-0011 cstr: 32142.14.cjss2023.05.2023-0011
  • Received Date: 2023-01-20
  • Rev Recd Date: 2023-04-18
  • Available Online: 2023-07-26
  • Distant Retrograde Orbit (DRO) is a kind of stable periodic orbit in Earth-Moon system. In this paper, a design method of distant retrograde orbit for spacecraft to fly by and explore near-Earth asteroids by means of the moon and Earth’s gravity assistance starting from DRO orbital station is studied. By means of earth-moon gravity assistance and mid-course lever maneuver, the velocity increment required for adjusting the inclination angle is reduced, and the reachable range of the asteroid flying by exploration under the same velocity increment constraint is expanded. At the same time, the calculation complexity of the problem is reduced by introducing DRO phasing, with reducing the phase constraints of escape and capture in DRO, and decoupling the phase of the transfer track from the DRO orbital station. The simulation results show that under the velocity increment of 2 km·s–1, the method can realize the orbit design of flyby exploration of near-Earth asteroids from DRO orbital station and return.

     

  • loading
  • [1]
    张晨. 基于数值延拓的日月综合借力DRO入轨策略[J/OL]. 北京航空航天大学学报, 2022: 1-17. [2022-12-21]. https://doi.org/10.13700/j.bh.1001-5965.2022.0494

    ZHANG Chen. Low-energy transfer from earth into DRO with hybrid gravity assist and numerical continuation[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. [2022-12-21]. https://doi.org/10.13700/j.bh.1001-5965.2022.0494
    [2]
    BROPHY J R, FRIEDMAN L, CULICK F. Asteroid retrieval feasibility[C]//2012 IEEE Aerospace Conference. Big Sky: IEEE, 2012: 1-16
    [3]
    ROA J, HANDMER C J. Quantifying hazards: asteroid disruption in lunar distant retrograde orbits[OL]. arXiv preprint arXiv: 1505.03800, 2015
    [4]
    丁毅, 侯征, 吴云霞. 世界陨石坑研究[J]. 地质论评, 2021, 67(4): 1095-1104 doi: 10.16509/j.georeview.2021.06.045

    DING Yi, HOU Zheng, WU Yunxia. Research on meteorite craters in the world[J]. Geological Review, 2021, 67(4): 1095-1104 doi: 10.16509/j.georeview.2021.06.045
    [5]
    ZHANG Y Y, ZHANG W. Deep space exploration strategy based on distant retrograde orbits space station[J]. Journal of Physics: Conference Series, 2021, 2006(1): 012061 doi: 10.1088/1742-6596/2006/1/012061
    [6]
    CONTE D, DI CARLO M, HO K, et al. Earth-Mars transfers through Moon distant retrograde orbits[J]. Acta Astronautica, 2018, 143: 372-379 doi: 10.1016/j.actaastro.2017.12.007
    [7]
    OSIRIS-REx mission operations | NASA[EB/OL]. [2018-12-13]. https://www.nasa.gov/content/osiris-rex-mission-operations
    [8]
    NASA - NSSDCA - spacecraft – Details[EB/OL]. [2021-12-18] https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2003-019 A
    [9]
    NASA - NSSDCA - spacecraft – Details[EB/OL]. [2021-12-18] https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2014-076 A
    [10]
    CAPDEVILA L, GUZZETTI D, HOWELL K. Various transfer options from Earth into distant retrograde orbits in the vicinity of the Moon[J]. Advances in the Astronautical Sciences, 2014, 152: 3659-3678
    [11]
    FOLTA D C, PAVLAK T A, HAAPALA A F, et al. Preliminary design considerations for access and operations in earth-moon L1/L2 orbits[J]. Advances in the Astronautical Sciences, 2013, 148: 2073-2092
    [12]
    谭明虎, 张科, 吕梅柏, 等. 基于大幅值Lyapunov轨道的地月转移轨道设计研究[J]. 航空学报, 2014, 35(5): 1209-1215

    TAN Minghu, ZHANG Ke, LYU Meibo, et al. Research on earth-moon transfer by using a large amplitude Lyapunov orbit[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1209-1215
    [13]
    PENG C, ZHANG H, WEN C X, et al. Exploring more solutions for low-energy transfers to lunar distant retrograde orbits[J]. Celestial Mechanics and Dynamical Astronomy, 2022, 134(1): 4 doi: 10.1007/s10569-021-10056-2
    [14]
    WELCH C M, PARKER J S, BUXTON C. Mission considerations for transfers to a distant retrograde orbit[J]. The Journal of the Astronautical Sciences, 2015, 62(2): 101-124 doi: 10.1007/s40295-015-0039-z
    [15]
    DEMEYER J, GURFIL P. Transfer to small distant retrograde orbits[J]. AIP Conference Proceedings, 2007, 886(1): 20-31
    [16]
    XU M, XU S J. Exploration of distant retrograde orbits around Moon[J]. Acta Astronautica, 2009, 65(5-6): 853-860 doi: 10.1016/j.actaastro.2009.03.026
    [17]
    曾豪, 李朝玉, 彭坤, 等. 地月空间NRHO与DRO在月球探测中的应用研究[J]. 宇航学报, 2020, 41(7): 910-919

    ZENG Hao, LI Zhaoyu, PENG Kun, et al. Research on application of earth-moon NRHO and DRO for lunar exploration[J]. Journal of Astronautics, 2020, 41(7): 910-919
    [18]
    REN J, LI M T, ZHENG J H. Families of transfers from the Moon to Distant Retrograde Orbits in cislunar space[J]. Astrophysics and Space Science, 2020, 365(12): 192 doi: 10.1007/s10509-020-03901-7
    [19]
    ZHANG R K, WANG Y, ZHANG H, et al. Transfers from distant retrograde orbits to low lunar orbits[J]. Celestial Mechanics and Dynamical Astronomy, 2020, 132(8): 41 doi: 10.1007/s10569-020-09982-4
    [20]
    BEZROUK C J, PARKER J. Long duration stability of distant retrograde orbits[C]//AIAA/AAS Astrodynamics Specialist Conference. San Diego: AIAA, 2014: 4424
    [21]
    王艾雪, 张晨, 王蜀泉, 等. 基于地月自由返回轨道的DRO入轨策略[J]. 载人航天, 2022, 28(1): 81-89 doi: 10.3969/j.issn.1674-5825.2022.01.012

    WANG Aixue, ZHANG Chen, WANG Shuquan, et al. Design considerations for access in to earth-moon DROs with lunar free-return trajectory[J]. Manned Spaceflight, 2022, 28(1): 81-89 doi: 10.3969/j.issn.1674-5825.2022.01.012
    [22]
    赵国强, 宝音贺西, 李俊峰. 基于B平面的火星探测直接转移轨道设计方法[J]. 中国空间科学技术, 2012, 32(1): 1-7 doi: 10.3780/j.issn.1000-758X.2012.01.001

    ZHAO Guoqiang, BAOYIN Hexi, LI Junfeng. Direct transfer trajectory design for mars exploration using B-plane[J]. Chinese Space Science and Technology, 2012, 32(1): 1-7 doi: 10.3780/j.issn.1000-758X.2012.01.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article Views(1284) PDF Downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return