Volume 43 Issue 5
Nov.  2023
Turn off MathJax
Article Contents
MA Shixuan, DONG Xiaolong, ZHU Di, MA Jianying, BAI Dongjin. Simulation of Surface Clutter Recognition Method in Lunar Lava Tube Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 853-863 doi: 10.11728/cjss2023.05.2023-0017
Citation: MA Shixuan, DONG Xiaolong, ZHU Di, MA Jianying, BAI Dongjin. Simulation of Surface Clutter Recognition Method in Lunar Lava Tube Exploration (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 853-863 doi: 10.11728/cjss2023.05.2023-0017

Simulation of Surface Clutter Recognition Method in Lunar Lava Tube Exploration

doi: 10.11728/cjss2023.05.2023-0017 cstr: 32142.14.cjss2023.05.2023-0017
  • Received Date: 2023-02-07
  • Rev Recd Date: 2023-04-08
  • Available Online: 2023-05-25
  • Lunar lava tubes represent a high-value target in lunar exploration, and a crucial challenge in their detection lies in distinguishing between lunar surface clutter and echoes from the lava tubes. This paper introduces a method for determining the source of echoes based on the power ratio of high-frequency and low-frequency electromagnetic waves. Leveraging the differential path attenuation rates of high and low-frequency electromagnetic waves in the lunar regolith, distinct characteristics emerge in the power ratios between lava tube echoes and surface clutter. The paper focuses on radar systems designed for lava tube detection, deriving formulas for key detection metrics such as resolution, echo power, signal-to-noise ratio, and signal-to-clutter ratio. Furthermore, through simulation results, radar system parameters are designed. Lastly, employing a pseudospectral time-domain approach and establishing a simulation system, the paper conducts simulated research on lunar lava tube echoes with different orientations. Simulation results demonstrate that utilizing the power ratio of high and low-frequency echoes is an effective means of distinguishing between lunar surface clutter and lava tube echoes. The power ratio of high and low-frequency echoes from lava tubes and surface clutter exhibits a positive correlation with lava tube depth and frequency ratio. This validates the effectiveness of using power ratios to discriminate between lunar surface clutter and lava tube echoes.

     

  • loading
  • [1]
    CHAPPAZ L, SOOD R, MELOSH H J, et al. Evidence of large empty lava tubes on the Moon using GRAIL gravity[J]. Geophysical Research Letters, 2017, 44(1): 105-112 doi: 10.1002/2016GL071588
    [2]
    BLAIR D M, CHAPPAZ L, SOOD R, et al. The structural stability of lunar lava tubes[J]. Icarus, 2017, 282: 47-55 doi: 10.1016/j.icarus.2016.10.008
    [3]
    HARUYAMA J, SAWAI S, MIZUNO T, et al. Exploration of lunar holes, possible skylights of underlying lava tubes, by Smart Lander for Investigating Moon (SLIM)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(ists28): Pk_7-Pk_10
    [4]
    HARUYAMA J, MOROTA T, KOBAYASHI S, et al. Lunar Holes and Lava Tubes as Resources for Lunar Science and Exploration[M]//BADESCU V. Moon: Prospective Energy and Material Resources. Berlin, Heidelberg: Springer, 2012
    [5]
    GREEN J. The geology of the lunar base[J]. Annals of the New York Academy of Sciences, 1963, 105(9): 491-625 doi: 10.1111/j.1749-6632.1963.tb42992.x
    [6]
    DE ANGELIS G, WILSON J W, CLOWDSLEY M S, et al. Lunar lava tube radiation safety analysis[J]. Journal of Radiation Research, 2002, 43(S): S41-S45 doi: 10.1269/jrr.43.S41
    [7]
    ECKART P. The Lunar Base Handbook: an Introduction to Lunar Base Design, Development, and Operations[M]. 2 nd ed. Boston: McGraw-Hill, 2006
    [8]
    KAKU T, HARUYAMA J, MIYAKE W, et al. Detection of intact lava tubes at marius hills on the moon by SELENE (Kaguya) Lunar Radar sounder[J]. Geophysical Research Letters, 2017, 44(20): 10155-10161
    [9]
    KOBAYASHI T, KIM J H, LEE S R, et al. Nadir detection of lunar lava tube by Kaguya Lunar Radar Sounder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7395-7418 doi: 10.1109/TGRS.2020.3033033
    [10]
    SOOD R, MELOSH J, HOWELL K. Lunar advanced Radar orbiter for subsurface sounding (LAROSS): Lava Tube Exploration mission[C]//Proceedings of the 26 th AAS/AIAA Space Flight Mechanics Meeting. Napa: Reserch Gate, 2016
    [11]
    CARRER L, BRUZZONE L. Solving for ambiguities in Radar geophysical exploration of planetary bodies by mimicking bats echolocation[J]. Nature Communications, 2017, 8: 2248 doi: 10.1038/s41467-017-02334-1
    [12]
    HÖRZ F. Lava tubes: potential shelters for habitats[M]//MENDELL W W. Lunar Bases and Space Activities of the 21st Century. Houston: Lunar and Planetary Institute, 1985
    [13]
    FRISILLO A L, OLHOEFT G R, STRANGWAY D W. Effects of vertical stress, temperature and density on the dielectric properties of lunar samples 72441, 12, 15301, 38 and a terrestrial basalt[J]. Earth and Planetary Science Letters, 1975, 24(3): 345-356 doi: 10.1016/0012-821X(75)90140-5
    [14]
    WAGNER N, EMMERICH K, BONITZ F, et al. Experimental investigations on the frequency- and temperature-dependent dielectric material properties of soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2518-2530 doi: 10.1109/TGRS.2011.2108303
    [15]
    OLHOEFT G R, STRANGWAY D W. Dielectric properties of the first 100 meters of the Moon[J]. Earth and Planetary Science Letters, 1975, 24(3): 394-404 doi: 10.1016/0012-821X(75)90146-6
    [16]
    HEIKEN G H, VANIMAN D T, FRENCH B N. Lunar Sourcebook[M]. Cambridge: Cambridge University Press, 1991
    [17]
    贺林峰. 月表微波辐射与散射计算及次表层结构探测[D]. 武汉: 华中科技大学, 2012

    HE Linfeng. Computation of Microwave Radiation and Scattering from Lunar Surface and Subsurface Layer Detection[D]. Wuhan: Huazhong University of Science and Technology, 2012
    [18]
    HELFENSTEIN P, SHEPARD M K. Submillimeter-scale topography of the Lunar regolith[J]. Icarus, 1999, 141(1): 107-131 doi: 10.1006/icar.1999.6160
    [19]
    ROSENBURG M A, AHARONSON O, HEAD J W, et al. Global surface slopes and roughness of the moon from the Lunar Orbiter Laser Altimeter[J]. Journal of Geophysical Research Planets, 2011, 116(E2): E02001
    [20]
    RENAU J, COLLINSON J A. Measurements of electromagnetic back-scattering from known, rough surfaces[J]. The Bell System Technical Journal, 1965, 44(10): 2203-2226 doi: 10.1002/j.1538-7305.1965.tb04144.x
    [21]
    TSANG L, KONG J A, DING K H, et al. Scattering and Emission by a Periodic Rough Surface[M]//TSANG L, KONG J A, DING K H, et al. Scattering of Electromagnetic Waves: Numerical Simulations. New York: John Wiley & Sons, 2001
    [22]
    任新成, 郭立新, 刘生春. 基于微扰法的高斯粗糙面电磁散射研究[J]. 延安大学学报(自然科学版), 2006, 25(1): 26-30

    REN Xincheng, GUO Lixin, LIU Shengchun. Study on electromagnetic scattering from gaussian rough surface by applying the small perturbation method[J]. Journal of Yanan University (Natural Science Edition), 2006, 25(1): 26-30
    [23]
    KRAUS J D. Radio Astronomy[M]. New York: McGraw-Hill, 1966
    [24]
    CARRER L, GEREKOS C, BRUZZONE L. A multi-frequency radar sounder for lava tubes detection on the moon: design, performance assessment and simulations[J]. Planetary and Space Science, 2018, 152: 1-17 doi: 10.1016/j.pss.2018.01.011
    [25]
    LEI Y, HAYNES M S, ARUMUGAM D, et al. A 2-D Pseudospectral Time-Domain (PSTD) simulator for large-scale electromagnetic scattering and Radar sounding applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4076-4098 doi: 10.1109/TGRS.2019.2960751
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article Views(378) PDF Downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return