Volume 43 Issue 5
Nov.  2023
Turn off MathJax
Article Contents
HE Hongwei, WANG Xiuying, ZHAO Guocun, YANG Dehe, WANG Qiao, HUANG Jianping. Distribution of Equatorial Electric Field and Its Relation with Ionosphere Distribution Detected by the ZH-1 Satellite (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 821-832 doi: 10.11728/cjss2023.05.2023-0020
Citation: HE Hongwei, WANG Xiuying, ZHAO Guocun, YANG Dehe, WANG Qiao, HUANG Jianping. Distribution of Equatorial Electric Field and Its Relation with Ionosphere Distribution Detected by the ZH-1 Satellite (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 821-832 doi: 10.11728/cjss2023.05.2023-0020

Distribution of Equatorial Electric Field and Its Relation with Ionosphere Distribution Detected by the ZH-1 Satellite

doi: 10.11728/cjss2023.05.2023-0020 cstr: 32142.14.cjss2023.05.2023-0020
  • Received Date: 2023-02-11
  • Rev Recd Date: 2023-04-24
  • Available Online: 2023-07-26
  • The nearly east-west power spectral density data of VLF band in 2019, obtained by the Zhangheng-1 satellite, are used to carry out studies on the background distribution of the equatorial electric field, its seasonal variations, as well as its relation with the background ionosphere. The results are as follows: variations of waveform distributions with the season are shown for the daytime equatorial electric field background in the equator and its adjacent regions, with wave number 3 and wave number 4 being the dominant structure; the longitude waveform distribution and its variation with the season can be seen from the spatial distribution of nighttime field background though its regularity is weaker than that of the daytime data; the daytime electric field background has a highly positive correlation with the ionospheric background, with a seasonal variation patter of spring-autumn peaks; Seasonal variation of equatorial nighttime electric field background is characterized by summer and winter peaks, and the correlation between the two is generally negative. Therefore, the spatiotemporal distribution of the electric field background and its correlation with the ionosphere background suggests that the electric field observations are consistent with the ionospheric observations in terms of statistical features obtained both from large as well as relatively small spatial scales. The EFD payload, as one of the payloads that produces the most data, provides a usable dataset for the study of ionosphere-related scientific problems.

     

  • loading
  • [1]
    WOODMAN R F. Vertical drift velocities and east-west electric fields at the magnetic equator[J]. Journal of Geophysical Research, 1970, 75(31): 6249-6259 doi: 10.1029/JA075i031p06249
    [2]
    BALSLEY B B. Electric fields in the equatorial ionosphere: a review of techniques and measurements[J]. Journal of Atmospheric and Terrestrial Physics, 1973, 35(6): 1035-1044 doi: 10.1016/0021-9169(73)90003-2
    [3]
    WOODMAN R F, RASTOGI R G, CALDERON C. Solar cycle effects on the electric fields in the equatorial ionosphere[J]. Journal of Geophysical Research, 1977, 82(32): 5257-5261 doi: 10.1029/JA082i032p05257
    [4]
    FEJER B G, FARLEY D T, WOODMAN R F, et al. Dependence of equatorial F region vertical drifts on season and solar cycle[J]. Journal of Geophysical Research: Space Physics, 1979, 84(A10): 5792-5796 doi: 10.1029/JA084iA10p05792
    [5]
    FEJER B G, DE PAULA E R, GONZÁLEZ S A, et al. Average vertical and zonal F region plasma drifts over Jicamarca[J]. Journal of Geophysical Research: Space Physics, 1991, 96(A8): 13901-13906 doi: 10.1029/91JA01171
    [6]
    YEH H C, HILL T W. Mechanism of parallel electric fields inferred from observations[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A8): 6706-6712 doi: 10.1029/JA086iA08p06706
    [7]
    FEJER B G, DE PAULA E R, HEELIS R A, et al. Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A4): 5769-5776 doi: 10.1029/94JA03240
    [8]
    BERTHELIER J J, GODEFROY M, LEBLANC F, et al. ICE, the electric field experiment on DEMETER[J]. Planetary and Space Science, 2006, 54(5): 456-471 doi: 10.1016/j.pss.2005.10.016
    [9]
    YAO Li, CHEN Huaran, LIU Xiaocan, et al. The global characteristics of VLF electric field frequency spectrum in ionosphere[J]. Seismological and Geomagnetic Observation and Research, 2011, 32(4): 27-34 doi: 10.3969/j.issn.1003-3246.2011.04.006
    [10]
    PFAFF R, URIBE P, FOURRE R, et al. The vector electric field investigation (VEFI) on the C/NOFS satellite[J]. Space Science Reviews, 2021, 217(8): 85 doi: 10.1007/s11214-021-00859-y
    [11]
    SHEN X H, ZHANG X M, YUAN S G, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission[J]. Science China Technological Sciences, 2018, 61(5): 634-642 doi: 10.1007/s11431-018-9242-0
    [12]
    WANG X Y, CHENG W L, YANG D H, et al. Preliminary validation of in situ electron density measurements onboard CSES using observations from Swarm Satellites[J]. Advances in Space Research, 2019, 64(4): 982-994 doi: 10.1016/j.asr.2019.05.025
    [13]
    SHEN X H, ZEREN Z M, YUAN S G, et al. The CSES mission and its preliminary results[J]. Aerospace China, 2020, 21(1): 5-18
    [14]
    GAO Peng, WANG Xiuying, YANG Dehe, et al. Electric field data storage experiment of the ZH-1 satellite[J]. Progress in Geophysics, 2021, 36(4): 1386-1392
    [15]
    ZHANG X M, FROLOV V, ZHAO S F, et al. The first joint experimental results between SURA and CSES[J]. Earth and Planetary Physics, 2018, 2(6): 527-537 doi: 10.26464/epp2018051
    [16]
    ZHAO S F, ZHOU C, SHEN X H, et al. Investigation of VLF transmitter signals in the ionosphere by ZH-1 observations and full-wave simulation[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4697-4709 doi: 10.1029/2019JA026593
    [17]
    LIAO Li, ZHAO Shufan, SHEN Xuhui, et al. Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter[J]. Chinese Journal of Geophysics, 2019, 62(4): 1210-1217 doi: 10.6038/cjg2019M0504
    [18]
    BOUDJADA M Y, EICHELBERGER H U, ZHANG X M, et al. Analysis of ground-based very low frequency signal recorded onboard CSES satellite[C]//Proceedings of 2021 Kleinheubach Conference. Miltengerg: IEEE, 2021: 1-3
    [19]
    MA Mianjun, LEI Jungang, LI Cheng, et al. Design optimization of zhangheng-1 space electric field detector[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(7): 582-589 doi: 10.13922/j.cnki.cjovst.2018.07.06
    [20]
    HUANG J P, LEI J G, LI S X, et al. The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results[J]. Earth and Planetary Physics, 2018, 2(6): 469-478 doi: 10.26464/epp2018045
    [21]
    DIEGO P, HUANG J P, PIERSANTI M, et al. The electric field detector on board the china seismo electromagnetic satellite—in-orbit results and validation[J]. Instruments, 2020, 5(1): 1 doi: 10.3390/instruments5010001
    [22]
    CHMYREV V M, SOROKIN V M, SHKLYAR D R. VLF transmitter signals as a possible tool for detection of seismic effects on the ionosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(16): 2053-2060 doi: 10.1016/j.jastp.2008.09.005
    [23]
    HAYOSH M, NĚMEC F, SANTOLÍK O, et al. Propagation properties of quasiperiodic VLF emissions observed by the DEMETER spacecraft[J]. Geophysical Research Letters, 2016, 43(3): 1007-1014 doi: 10.1002/2015GL067373
    [24]
    MEREDITH N P, HORNE R B, CLILVERD M A, et al. An investigation of VLF transmitter wave power in the inner radiation belt and slot region[J]. Journal of Geophysical Research: Space Physics, 2019, 124(7): 5246-5259 doi: 10.1029/2019JA026715
    [25]
    ABDU M A. Electrodynamics of ionospheric weather over low latitudes[J]. Geoscience Letters, 2016, 3(1): 11 doi: 10.1186/s40562-016-0043-6
    [26]
    WANG Xiuying, YANG Dehe, ZHOU Zihan, et al. Features of topside ionospheric background over China and its adjacent areas obtained by the ZH-1 satellite[J]. Chinese Journal of Geophysics, 2021, 64(2): 391-409
    [27]
    ADENIYI J O. Magnetic storm effects on the morphology of the equatorial F2-layer[J]. Journal of Atmospheric and Terrestrial Physics, 1986, 48(8): 695-702 doi: 10.1016/0021-9169(86)90019-X
    [28]
    FEJER B G. Low latitude ionospheric electrodynamics[J]. Space Science Reviews, 2011, 158(1): 145-166 doi: 10.1007/s11214-010-9690-7
    [29]
    KIL H, OH S J, KELLEY M C, et al. Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1[J]. Geophysical Research Letters, 2007, 34(14): L14110 doi: 10.1029/2007GL030018
    [30]
    FATKULLIN M N. The seasonal anomaly in the electron density of the topside F2-region[J]. Journal of Atmospheric and Terrestrial Physics, 1970, 32(6): 1067-1075 doi: 10.1016/0021-9169(70)90118-2
    [31]
    BALAN N, OTSUKA Y, BAILEY G J, et al. Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A5): 9481-9495 doi: 10.1029/97JA03137
    [32]
    LIU L B, ZHAO B Q, WAN W X, et al. Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A7): A07303
    [33]
    BURNS A G, SOLOMON S C, WANG W, et al. Daytime climatology of ionospheric NmF2 and hmF2 from COSMIC data[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A9): A09315
    [34]
    WANG Xiuying, YANG Dehe, ZHANG Xueqing, et al. Spatiotemporal features of topside ionospheric irregularities during low solar activity period detected by the ZH-1 Satellite[J]. Chinese Journal of Geophysics, 2022, 65(3): 862-881 doi: 10.6038/cjg2022P0327
    [35]
    SAGAWA E, IMMEL T J, FREY H U, et al. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A11): A11302 doi: 10.1029/2004JA010848
    [36]
    IMMEL T J, SAGAWA E, ENGLAND S L, et al. Control of equatorial ionospheric morphology by atmospheric tides[J]. Geophysical Research Letters, 2006, 33(15): L15108 doi: 10.1029/2006GL026161
    [37]
    BURKE W J, DE LA BEAUJARDIÈRE O, GENTILE L C, et al. C/NOFS observations of plasma density and electric field irregularities at post-midnight local times[J]. Geophysical Research Letters, 2009, 36(18): L00C09
    [38]
    YIZENGAW E, ZESTA E, MOLDWIN M B, et al. Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A7): A07312
    [39]
    HUANG C S, LU G, ZHANG Y L, et al. Space Physics and Aeronomy, Ionosphere Dynamics and Applications[M]. Hoboken, NJ: Wiley, 2021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article Views(403) PDF Downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return