Volume 43 Issue 5
Nov.  2023
Turn off MathJax
Article Contents
LI Chunlai, LU Jianyong, LI Jingyuan. Variation in the Longitude-latitude Distribution and Latitude-altitude Distribution of OI 135.6 nm Airglow during Magnetic Storms (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 807-820 doi: 10.11728/cjss2023.05.2023-0022
Citation: LI Chunlai, LU Jianyong, LI Jingyuan. Variation in the Longitude-latitude Distribution and Latitude-altitude Distribution of OI 135.6 nm Airglow during Magnetic Storms (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 807-820 doi: 10.11728/cjss2023.05.2023-0022

Variation in the Longitude-latitude Distribution and Latitude-altitude Distribution of OI 135.6 nm Airglow during Magnetic Storms

doi: 10.11728/cjss2023.05.2023-0022 cstr: 32142.14.cjss2023.05.2023-0022
  • Received Date: 2023-02-13
  • Rev Recd Date: 2023-05-06
  • Available Online: 2023-05-26
  • Variation in the latitude-longitude distribution and latitude-height distribution of airglow emission intensity during two intense magnetic storms in October and November 2003 were investigated using OI 135.6 nm airglow emission data observed by the GUVI detector. The results show that the intensity of OI 135.6 nm airglow emission in most regions of the world increases with a decrease in the Dst index during the magnetic storms and shows a quasi-positive correlation with the intensity of magnetic storms. Horizontally, the enhancement of airglow emission extends from both sides of the magnetic equator during the magnetic quiescence to the high latitudes to near 50° in the northern and southern hemispheres, and the increase is basically more than 80%, and the maximum can exceed 200%, and the variation of latitude and longitude distribution during the magnetic storms show north-south and latitudinal asymmetry. Vertically, the enhancement of the airglow emission spreads from 300 km to 400 km (i.e., F2 layer height) to other heights, especially at some latitudes between 100 km to 200 km (i.e., low thermosphere height), which is more significant than other heights, with an increase of more than 300%; the time of the enhancement of the airglow emission is basically synchronized with the magnetic storm phase.

     

  • loading
  • [1]
    高红, 徐寄遥, 陈光明, 等. TIMED卫星测量得到的OH和O2(1.27 μm)夜气辉全球分布特征[J]. 中国科学: 技术科学, 2011, 41(3): 374-384

    GAO Hong, XU Jiyao, CHEN Guangming, et al. Global distributions of OH and O2 (1.27 μm) nightglow emissions observed by TIMED satellite[J]. Science China Technological Sciences, 2011, 54(2): 447-456
    [2]
    MEIER R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews, 1991, 58(1): 1-185 doi: 10.1007/BF01206000
    [3]
    王咏梅, 付利平, 王英鉴. 星载远紫外极光/气辉探测发展综述[J]. 地球物理学进展, 2008, 23(5): 1474-1479

    WANG Yongmei, FU Liping, WANG Yingjian. Review of space-based FUV aurora/airglow observations[J]. Progress in Geophysics, 2008, 23(5): 1474-1479
    [4]
    KUPPERIAN JR J E, BYRAM E T, CHUBB T A, et al. Far ultraviolet radiation in the night sky[J]. Planetary and Space Science, 1959, 1(1): 3-6 doi: 10.1016/0032-0633(59)90015-7
    [5]
    王大鑫. 真空紫外电离层光学遥感辐射特性和反演算法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020

    WANG Daxin. Research on Radiation Characteristics and Inversion Algorithm of Vacuum Ultraviolet Ionospheric Optical Remote Sensing[D]. University of Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2020
    [6]
    DYMOND K F. Remote sensing of nighttime F region peak height and peak density using ultraviolet line ratios[J]. Radio Science, 2009, 44(1): RS0A28 doi: 10.1029/2008RS004091
    [7]
    STEPHAN A W, KORPELA E J, SIRK M M, et al. Daytime ionosphere retrieval algorithm for the ionospheric connection explorer (ICON)[J]. Space Science Reviews, 2017, 212(1/2): 645-654
    [8]
    ZHANG S P, SHEPHERD G G. Neutral winds in the lower thermosphere observed by WINDII during the April 4–5th, 1993 storm[J]. Geophysical Research Letters, 2000, 27(13): 1855-1858 doi: 10.1029/2000GL000034
    [9]
    SAHAI Y, SHIOKAWA K, OTSUKA Y, et al. Imaging observations of midlatitude ionospheric disturbances during the geomagnetic storm of February 12, 2000[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A11): 24481-24492 doi: 10.1029/2000JA900169
    [10]
    LEONOVICH L A, MIKHALEV A V, LEONOVICH V A. The 557.7 and 630-nm atomic oxygen midlatitude airglow variations associated with geomagnetic activity[J]. Atmospheric and Oceanic Optics, 2011, 24(4): 396-401 doi: 10.1134/S1024856011040105
    [11]
    MUKHERJEE G K. Airglow and other F-layer variations in the Indian sector during the geomagnetic storm of February 5-7, 2000[J]. Earth, Planets and Space, 2006, 58(5): 623-632 doi: 10.1186/BF03351960
    [12]
    GHODPAGE R N, PATIL P T, GURAV O B, et al. Ionospheric response to major storm of 17 th March 2015 using multi-instrument data over low latitude station Kolhapur (16.8°N, 74.2°E, 10.6°dip. Lat. )[J]. Advances in Space Research, 2018, 62(3): 624-637 doi: 10.1016/j.asr.2018.05.003
    [13]
    KARAN D K, PALLAMRAJU D. Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 170: 35-47 doi: 10.1016/j.jastp.2018.02.003
    [14]
    ISHIMOTO M, ROMICK G J, PAXTON L J, et al. Night UV spectra (1100-2900Å) at mid and low latitude during a magnetic storm[J]. Geophysical Research Letters, 1992, 19(8): 813-816 doi: 10.1029/92GL00398
    [15]
    TINSLEY B A, ROHRBAUGH R P, ISHIMOTO M, et al. Middle- and low-latitude emissions from energetic neutral atom precipitation seen from ATLAS 1 under quiet magnetic conditions[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A10): 19577-19584 doi: 10.1029/94JA01265
    [16]
    STEPHAN A W, CHAKRABARTI S, COTTON D M. Evidence of ENA precipitation in the EUV dayglow[J]. Geophysical Research Letters, 2000, 27(18): 2865-2868 doi: 10.1029/2000GL000040
    [17]
    DEMAJISTRE R, BRANDT P C, IMMEL T J, et al. Storm-time enhancement of mid-latitude ultraviolet emissions due to energetic neutral atom precipitation[J]. Geophysical Research Letters, 2005, 32(15): L15105 doi: 10.1029/2005GL023059
    [18]
    ZHANG Y, PAXTON L J, KOZYRA J U, et al. Nightside thermospheric FUV emissions due to energetic neutral atom precipitation during magnetic superstorms[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A9): A09307 doi: 10.1029/2005JA011152
    [19]
    王大鑫, 付利平, 江芳, 等. 利用FY-3(D)卫星电离层光度计数据反演电离层O/N2[J]. 光谱学与光谱分析, 2021, 41(4): 1004-1010

    WANG Daxin, FU Liping, JIANG Fang, et al. Inversion of ionospheric O/N2 by using FY-3 D ionospheric photometer data[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1004-1010
    [20]
    JIANG F, MAO T, ZHANG X X, et al. Nightside 135.6 nm emission enhancements of mid/low latitudes during geomagnetic storms as observed by the ionosphere Photo Meter (IPM) on the Chinese meteorological satellite FY-3 D[J]. Advances in Space Research, 2023, 71(6): 2781-2798 doi: 10.1016/j.asr.2022.11.025
    [21]
    ZHANG Y L, PAXTON L J, HUANG C S, et al. FUV observations of variations in thermospheric composition and topside ionospheric density during the November 2004 magnetic superstorm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 228: 105832 doi: 10.1016/j.jastp.2022.105832
    [22]
    王静. 远紫外遥感电离层关键参量的反演技术研究[D]. 北京: 北京理工大学, 2015

    WANG Jing. Research on Inversion Techniques for Key Ionospheric Parameters in Far Ultraviolet Remote Sensing[D]. Beijing: Beijing Institute of Technology, 2015
    [23]
    HUFFMAN R E. Atmospheric Ultraviolet Remote Sensing[M]. Boston: Academic Press, 1992
    [24]
    郭兵. 电离层扩展F不规则体及赤道异常驼峰区波状结构的研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020

    GUO Bing. Study on Ionospheric Spread-F at Low- and Mid-latitude and Wavelike Structure in Equatorial Ionization Anomaly Crests[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2020
    [25]
    CHRISTENSEN A B, WALTERSCHEID R L, ROSS M N, et al. Global Ultraviolet Imager (GUVI) for the NASA Thermosphere-Ionsphere-Mesosphere Energetics and Dynamics (TIMED) mission[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1994, 2266: 451-466
    [26]
    PEACOCK K. Spectrographs in space[C]//Proceedings of the SPIE 3116, Small Spacecraft, Space Environments, and Instrumentation Technologies. San Diego: SPIE, 1997: 57-68
    [27]
    JIANG F, MAO T, ZHANG X X, et al. Observation of thermosphere and ionosphere using the ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3 D[J]. Advances in Space Research, 2020, 66(9): 2151-2167 doi: 10.1016/j.asr.2020.07.027
    [28]
    ZENG Z, BURNS A, WANG W B, et al. Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A7): A07305 doi: 10.1029/2007JA012897
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article Views(497) PDF Downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return