Citation: | CHEN Lin, ZHOU Xunxiu, Axikegu, HUANG Daihui, WANG Peihan, CHEN Xuejian. Effects of Thunderstorms Electric Field on the Lateral Distribution of Cosmic Ray Secondary Particles at LHAASO (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 833-839 doi: 10.11728/cjss2023.05.2023-0027 |
[1] |
HUANG Zhicheng, ZHOU Xunxiu, HUANG Daihui, et al. Simulation study of scaler mode at large high altitude air shower observatory[J]. Acta Physica Sinica, 2021, 70(19): 199301 doi: 10.7498/aps.70.20210632
|
[2] |
WANG Kongsen, WANG He, HUANG Xingtao, et al. Study on the production characteristics of cosmic ray high energy family events with simulation and experiment[J]. High Energy Physics and Nuclear Physics, 2004, 28(3): 232-238 doi: 10.3321/j.issn:0254-3052.2004.03.004
|
[3] |
MARSHALL T C, RUST W D, STOLZENBURG M. Electrical structure and updraft speeds in thunderstorms over the southern Great Plains[J]. Journal of Geophysical Research, 1995, 100(D1): 1001-1015 doi: 10.1029/94JD02607
|
[4] |
MARSHALL T C, STOLZENBURG M, MAGGIO C R, et al. Observed electric fields associated with lightning initiation[J]. Geophysical Research Letters, 2005, 32(3): L03813
|
[5] |
GUREVICH A V, MILIKH G M, ROUSSEL-DUPRE R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Physics Letters A, 1992, 165(5/6): 463-468
|
[6] |
ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China)[J]. Acta Physica Sinica, 2015, 64(14): 149202 doi: 10.7498/aps.64.149202
|
[7] |
CHILINGARIAN A, HOVSEPYAN G, ZAZYAN M. Muon tomography of charged structures in the atmospheric electric field[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094594 doi: 10.1029/2021GL094594
|
[8] |
HEUMESSER M, CHANRION O, NEUBERT T, et al. Spectral observations of optical emissions associated with terrestrial gamma-ray flashes[J]. Geophysical Research Letters, 2021, 48(4): 2020GL090700 doi: 10.1029/2020GL090700
|
[9] |
WADA Y, MATSUMOTO T, ENOTO T, et al. Catalog of gamma-ray glows during four winter seasons in Japan[J]. Physical Review Research, 2021, 3(4): 043117 doi: 10.1103/PhysRevResearch.3.043117
|
[10] |
AXIKEGU, BARTOLI B, BERNARDINI P, et al. Cosmic ray shower rate variations detected by the ARGO-YBJ experiment during thunderstorms[J]. Physical Review D, 2022, 106(2): 022008 doi: 10.1103/PhysRevD.106.022008
|
[11] |
TSUCHIYA H, HIBINO K, KAWATA K, et al. Observation of thundercloud-related gamma rays and neutrons in Tibet[J]. Physical Review D, 2012, 85(9): 092006 doi: 10.1103/PhysRevD.85.092006
|
[12] |
CHILINGARIAN A, HOVSEPYAN G, ASLANYAN D, et al. Thunderstorm ground enhancements: multivariate analysis of 12 years of observations[J]. Physical Review D, 2022, 106(8): 082004 doi: 10.1103/PhysRevD.106.082004
|
[13] |
FISHMAN G J, BHAT P N, MALLOZZI R, et al. Discovery of intense gamma-ray flashes of atmospheric origin[J]. Science, 1994, 264(5163): 1313-1316 doi: 10.1126/science.264.5163.1313
|
[14] |
BRIGGS M S, FISHMAN G J, CONNAUGHTON V, et al. First results on terrestrial gamma ray flashes from the Fermi gamma-ray burst monitor[J]. Journal of Geophysical Research, 2010, 115(A7): A07323
|
[15] |
NEUBERT T, ØSTGAARD N, REGLERO V, et al. A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning[J]. Science, 2020, 367(6474): 183-186 doi: 10.1126/science.aax3872
|
[16] |
TSUCHIYA H, ENOTO T, YAMADA S, et al. Long-duration γ ray emissions from 2007 and 2008 winter thunderstorms[J]. Journal of Geophysical Research, 2011, 116(D9): D09113
|
[17] |
CHILINGARIAN A, MAILYAN B, VANYAN L. Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds[J]. Atmospheric Research, 2012, 114-115: 1-16 doi: 10.1016/j.atmosres.2012.05.008
|
[18] |
YAN Ruirui, HUANG Daihui, ZHAO Bing, et al. Effects of thunderstorms electric field on energy of cosmic rays at LHAASO[J]. Chinese Journal of Space Science, 2020, 40(1): 65-71 doi: 10.11728/cjss2020.01.065
|
[19] |
VANYAN L, CHILINGARYAN A. Simulations of the Relativistic Runaway Electron Avalanches (RREA) in the thunderclouds above the Aragats space Environmental center (ASEC)[C]//Proceedings of the 32 nd International Cosmic Ray Conference. Beijing: International Cosmic Ray Conference, 2011: 338-341
|
[20] |
MA X H, BI Y J, CAO Z, et al. Chapter 1 LHAASO instruments and detector technology[J]. Chinese Physics C, 2022, 46(3): 030001 doi: 10.1088/1674-1137/ac3fa6
|
[21] |
WANG P H, HUANG D H, ZHOU X X, et al. Characteristics of near-earth thunderstorm electric fields at LHAASO observatory[C]//Proceedings of Science. Berlin: Sissa Medialab Srl, 2022: 1-10
|
[22] |
JIA H Y, FENG L, RUFFOLO D, et al. Chapter 7 solar and heliospheric physics and interdisciplinary research with LHAASO[J]. Chinese Physics C, 2022, 46(3): 030007 doi: 10.1088/1674-1137/ac3fae
|
[23] |
HECK D, KNAPP J, CAPDEVIELLE J, et al. CORSIKA: a Monte Carlo code to simulate extensive air showers[EB/OL]. [2023-02-15]. https://www.ikp.kit.edu/corsika/70.php
|
[24] |
DWYER J R. A fundamental limit on electric fields in air[J]. Geophysical Research Letters, 2003, 30(20): 2055
|
[25] |
SYMBALISTY E M D, ROUSSEL-DUPRE R A, YUKHIMUK V A. Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies[J]. IEEE Transactions on Plasma Science, 1998, 26(5): 1575-1582 doi: 10.1109/27.736065
|
[26] |
AXI K G, ZHOU X X, HUANG Z C, et al. Intensity variations of showers with different zenith angle ranges during thunderstorms[J]. Astrophysics and Space Science, 2022, 367(3): 30 doi: 10.1007/s10509-022-04056-3
|
[27] |
ZHOU X X, WANG X J, HUANG D H, et al. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet[J]. Astroparticle Physics, 2016, 84: 107-114 doi: 10.1016/j.astropartphys.2016.08.004
|