Citation: | HUO Xiaozhi, WANG Qing, GU Junping, WANG Zhantao, YU Qiang, WANG Qinggong. Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 890-898 doi: 10.11728/cjss2023.05.2023-05-yg09 |
[1] |
杨涛, 赵石磊, 高腾, 等. 航天分散热源控温用环路热管设计及飞行应用[J]. 宇航学报, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014
YANG Tao, ZHAO Shilei, GAO Teng, et al. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources[J]. Journal of Astronautics, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014
|
[2] |
WANG C X, XU S H, SUN Z W, et al. Influence of contact angle and tube size on capillary-driven flow under microgravity[J]. AIAA Journal, 2009, 47(11): 2642-2648 doi: 10.2514/1.41899
|
[3] |
孙鹏程. 自输液表面设计制备及基础应用研究[D]. 南京: 南京航空航天大学, 2021
SUN Pengcheng. Design and Fabrication of Spontaneous Liquid Transport Surface and Its Fundamental Application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021
|
[4] |
李健, 郑雯瀚, 洪芳军. 三维多孔吸液芯毛细特性孔隙尺度格子Boltzmann模拟[J]. 工程热物理学报, 2022, 43(3): 758-762
LI Jian, ZHENG Wenhan, HONG Fangjun. Three-dimensional lattice Boltzmann simulation of capillary performance in a porous wick at pore scale[J]. Journal of Engineering Thermophysics, 2022, 43(3): 758-762
|
[5] |
WANG Q G, LI L, GU J P, et al. A dynamic model for the oscillatory regime of liquid rise in capillaries[J]. Chemical Engineering Science, 2019, 209: 115220 doi: 10.1016/j.ces.2019.115220
|
[6] |
李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性[J]. 物理学报, 2023, 72(2): 024702
LI Chunxi, MA Cheng, YE Xuemin. Thermocapillary migration of thin droplet on wettability-confined track[J]. Acta Physica Sinica, 2023, 72(2): 024702
|
[7] |
高云天, 冉茂宇. 不同倾斜角度下毛细管浸润吸水特性实验研究[J]. 中外建筑, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049
GAO Yuntian, RAN Maoyu. Experimental study on water absorption characteristics of capillary at different inclined angles[J]. Chinese and Overseas Architecture, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049
|
[8] |
BOSANQUET C H. LV. On the flow of liquids into capillary tubes[J]. Philosophical Magazine, 1923, 45(267): 525-531
|
[9] |
SZEKELY J, NEUMANN A W, CHUANG Y K. The rate of capillary penetration and the applicability of the washburn equation[J]. Journal of Colloid and Interface Science, 1971, 35(2): 273-278 doi: 10.1016/0021-9797(71)90120-2
|
[10] |
LEVINE S, REED P, WATSON E J, et al. A Theory of the Rate of Rise of a Liquid in a Capillary[M]//KERKER M. Colloid and Interface Science. New York: Academic Press, 1976: 403-491
|
[11] |
QUÉRÉ D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5): 533-538 doi: 10.1209/epl/i1997-00389-2
|
[12] |
DREYER M, DELGADO A, PATH H J. Capillary rise of liquid between parallel plates under microgravity[J]. Journal of Colloid and Interface Science, 1994, 163(1): 158-168 doi: 10.1006/jcis.1994.1092
|
[13] |
STANGE M, DREYER M E, RATH H J. Capillary driven flow in circular cylindrical tubes[J]. Physics of Fluids, 2003, 15(9): 2587-2601 doi: 10.1063/1.1596913
|
[14] |
徐升华, 周宏伟, 王彩霞, 等. 微重力条件下不同截面形状管中毛细流动的实验研究[J]. 物理学报, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702
XU Shenghua, ZHOU Hongwei, WANG Caixia, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition[J]. Acta Physica Sinica, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702
|
[15] |
CHEN S T, DUAN L, LI Y, et al. Capillary phenomena between plates from statics to dynamics under microgravity[J]. Microgravity Science and Technology, 2022, 34(4): 70 doi: 10.1007/s12217-022-09983-y
|
[16] |
CHEN S T, CHEN Y, DUAN L, et al. Capillary rise of liquid in concentric annuli under microgravity[J]. Microgravity Science and Technology, 2022, 34(3): 30 doi: 10.1007/s12217-022-09947-2
|
[17] |
TIAN Y, JIANG Y, ZHOU J J, et al. Dynamics of taylor rising[J]. Langmuir, 2019, 35(15): 5183-5190 doi: 10.1021/acs.langmuir.9b00335
|
[18] |
DIEZ-BARROSO R, MEDINA A, VILLA A L, et al. Dynamics of the capillary rise in tilted Taylor-Hauksbee cells[J]. Revista Mexicana De Fisica, 2022, 68(6): 060601
|
[19] |
DAS S, MITRA S K. Different regimes in vertical capillary filling[J]. Physical Review E, 2013, 87(6): 063005 doi: 10.1103/PhysRevE.87.063005
|
[20] |
GAO S Q, ZHANG X Y, ZHOU Y H. Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction[J]. IOP Conference Series: Materials Science and Engineering, 2018, 372: 012017 doi: 10.1088/1757-899X/372/1/012017
|