Volume 43 Issue 5
Nov.  2023
Turn off MathJax
Article Contents
HUO Xiaozhi, WANG Qing, GU Junping, WANG Zhantao, YU Qiang, WANG Qinggong. Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 890-898 doi: 10.11728/cjss2023.05.2023-05-yg09
Citation: HUO Xiaozhi, WANG Qing, GU Junping, WANG Zhantao, YU Qiang, WANG Qinggong. Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 890-898 doi: 10.11728/cjss2023.05.2023-05-yg09

Effects of Gravity Level and Tilt Angle on Oscillation of Capillary Rise

doi: 10.11728/cjss2023.05.2023-05-yg09 cstr: 32142.14.cjss2023.05.2023-05-yg09
  • Received Date: 2023-07-30
  • Rev Recd Date: 2023-09-01
  • Available Online: 2023-10-08
  • The dynamic evolution of interface in capillary plays an important role in spacecraft engineering and space fluid management. The process of interfacial oscillation in capillary has been well observed on the ground, which is related to factors such as capillary size, fluid properties and the wall’s wettability. However, in practical applications in space, the capillary rise and oscillation of the interface will be affected by the tilt angle of the capillary tube and gravity level. For this reason, the process of the interface oscillation in a capillary tube is investigated in this work considering the effects of gravity level and the tilt angle of the tube. A mathematical model is built and numerical simulation is performed to obtain adequate details of the interface oscillation. It is shown that the oscillation feature of the capillary interface is determined by the ratio of Ohnesorge number (Oh) to Bond number (Bo). The Oh/Bo value decreases with gravitational acceleration level, which enhances the oscillation strength. When the capillary tube is tilted, the interface’s oscillation is affected by the component of gravity force along the capillary direction. As the tilt angle increases, the capillary oscillation phenomenon is weakened.

     

  • loading
  • [1]
    杨涛, 赵石磊, 高腾, 等. 航天分散热源控温用环路热管设计及飞行应用[J]. 宇航学报, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014

    YANG Tao, ZHAO Shilei, GAO Teng, et al. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources[J]. Journal of Astronautics, 2021, 42(6): 798-806 doi: 10.3873/j.issn.1000-1328.2021.06.014
    [2]
    WANG C X, XU S H, SUN Z W, et al. Influence of contact angle and tube size on capillary-driven flow under microgravity[J]. AIAA Journal, 2009, 47(11): 2642-2648 doi: 10.2514/1.41899
    [3]
    孙鹏程. 自输液表面设计制备及基础应用研究[D]. 南京: 南京航空航天大学, 2021

    SUN Pengcheng. Design and Fabrication of Spontaneous Liquid Transport Surface and Its Fundamental Application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021
    [4]
    李健, 郑雯瀚, 洪芳军. 三维多孔吸液芯毛细特性孔隙尺度格子Boltzmann模拟[J]. 工程热物理学报, 2022, 43(3): 758-762

    LI Jian, ZHENG Wenhan, HONG Fangjun. Three-dimensional lattice Boltzmann simulation of capillary performance in a porous wick at pore scale[J]. Journal of Engineering Thermophysics, 2022, 43(3): 758-762
    [5]
    WANG Q G, LI L, GU J P, et al. A dynamic model for the oscillatory regime of liquid rise in capillaries[J]. Chemical Engineering Science, 2019, 209: 115220 doi: 10.1016/j.ces.2019.115220
    [6]
    李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性[J]. 物理学报, 2023, 72(2): 024702

    LI Chunxi, MA Cheng, YE Xuemin. Thermocapillary migration of thin droplet on wettability-confined track[J]. Acta Physica Sinica, 2023, 72(2): 024702
    [7]
    高云天, 冉茂宇. 不同倾斜角度下毛细管浸润吸水特性实验研究[J]. 中外建筑, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049

    GAO Yuntian, RAN Maoyu. Experimental study on water absorption characteristics of capillary at different inclined angles[J]. Chinese and Overseas Architecture, 2019(11): 163-165 doi: 10.19940/j.cnki.1008-0422.2019.11.049
    [8]
    BOSANQUET C H. LV. On the flow of liquids into capillary tubes[J]. Philosophical Magazine, 1923, 45(267): 525-531
    [9]
    SZEKELY J, NEUMANN A W, CHUANG Y K. The rate of capillary penetration and the applicability of the washburn equation[J]. Journal of Colloid and Interface Science, 1971, 35(2): 273-278 doi: 10.1016/0021-9797(71)90120-2
    [10]
    LEVINE S, REED P, WATSON E J, et al. A Theory of the Rate of Rise of a Liquid in a Capillary[M]//KERKER M. Colloid and Interface Science. New York: Academic Press, 1976: 403-491
    [11]
    QUÉRÉ D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5): 533-538 doi: 10.1209/epl/i1997-00389-2
    [12]
    DREYER M, DELGADO A, PATH H J. Capillary rise of liquid between parallel plates under microgravity[J]. Journal of Colloid and Interface Science, 1994, 163(1): 158-168 doi: 10.1006/jcis.1994.1092
    [13]
    STANGE M, DREYER M E, RATH H J. Capillary driven flow in circular cylindrical tubes[J]. Physics of Fluids, 2003, 15(9): 2587-2601 doi: 10.1063/1.1596913
    [14]
    徐升华, 周宏伟, 王彩霞, 等. 微重力条件下不同截面形状管中毛细流动的实验研究[J]. 物理学报, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702

    XU Shenghua, ZHOU Hongwei, WANG Caixia, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition[J]. Acta Physica Sinica, 2013, 62(13): 134702 doi: 10.7498/aps.62.134702
    [15]
    CHEN S T, DUAN L, LI Y, et al. Capillary phenomena between plates from statics to dynamics under microgravity[J]. Microgravity Science and Technology, 2022, 34(4): 70 doi: 10.1007/s12217-022-09983-y
    [16]
    CHEN S T, CHEN Y, DUAN L, et al. Capillary rise of liquid in concentric annuli under microgravity[J]. Microgravity Science and Technology, 2022, 34(3): 30 doi: 10.1007/s12217-022-09947-2
    [17]
    TIAN Y, JIANG Y, ZHOU J J, et al. Dynamics of taylor rising[J]. Langmuir, 2019, 35(15): 5183-5190 doi: 10.1021/acs.langmuir.9b00335
    [18]
    DIEZ-BARROSO R, MEDINA A, VILLA A L, et al. Dynamics of the capillary rise in tilted Taylor-Hauksbee cells[J]. Revista Mexicana De Fisica, 2022, 68(6): 060601
    [19]
    DAS S, MITRA S K. Different regimes in vertical capillary filling[J]. Physical Review E, 2013, 87(6): 063005 doi: 10.1103/PhysRevE.87.063005
    [20]
    GAO S Q, ZHANG X Y, ZHOU Y H. Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction[J]. IOP Conference Series: Materials Science and Engineering, 2018, 372: 012017 doi: 10.1088/1757-899X/372/1/012017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(519) PDF Downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return