Citation: | WEI Lie, DU Wangfang, XUE Ziyang, HE Falong, LI Kai, ZHAO Jianfu. Wave Propagation Law at the Gas-liquid Interface in a Storage Tank Due to Gravity Jumps (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 875-882 doi: 10.11728/cjss2023.05.2023-yg12 |
[1] |
KARTUZOVA O V, KASSEMI M. CFD jet mixing model validation against Zero-Boil-Off tank (ZBOT) microgravity experiment[C]//Proceedings of the AIAA Propulsion and Energy 2019 Forum. Indianapolis: American Institute of Aeronautics and Astronautics, 2019
|
[2] |
郭斌, 赵建福, 李凯, 等. 零重力条件下低温射流抑制大尺寸液氢储罐热分层的数值研究[J]. 力学学报, 2021, 53(4): 1170-1182 doi: 10.6052/0459-1879-20-343
GUO Bin, ZHAO Jianfu, LI Kai, et al. Numerical study on thermal destratification in large scale hydrogen propellant tank in space by jet injection under zero gravity condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1170-1182 doi: 10.6052/0459-1879-20-343
|
[3] |
LI J C, GUO B, ZHAO J F, et al. On the space thermal destratification in a partially filled hydrogen propellant tank by jet injection[J]. Microgravity Science and Technology, 2022, 34(1): 6 doi: 10.1007/s12217-021-09923-2
|
[4] |
肖立明, 李欣, 胡声超, 等. 微重力条件下上面级贮箱液体推进剂自由界面变形数值模拟研究[J]. 航天器环境工程, 2020, 37(2): 115-119 doi: 10.12126/see.2020.02.002
XIAO Liming, LI Xin, HU Shengchao, et al. Numerical simulation of free interface deformation of liquid propellant in upper stage tank under microgravity condition[J]. Spacecraft Environment Engineering, 2020, 37(2): 115-119 doi: 10.12126/see.2020.02.002
|
[5] |
MASICA W J, PETRASH D A. Motion of Liquid-Vapor Interface in Response to Imposed Acceleration[R]. Washington: NASA, 1965
|
[6] |
MASICA W J, PETRASH D A, OTTO E W. Hydrostatic Stability of the Liquid-Vapor Interface in a Gravitational Field[R]. Washington: NASA, 1964
|
[7] |
MASICA W J, DERDUL J D, PETRASH D A. Hydrostatic Stability of the Liquid-Vapor Interface in A Low-Acceleration Field[R]. Washington: NASA, 1964
|
[8] |
BRETHERTON F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1961, 10(2): 166-188 doi: 10.1017/S0022112061000160
|
[9] |
GLUCK D F, GILLE J P. Fluid mechanics of zero-G propellant transfer in spacecraft propulsion systems[J]. Journal of Engineering for Industry, 1965, 87(1): 1-8 doi: 10.1115/1.3670751
|
[10] |
ABRAMSON H N. The Dynamic Behavior of Liquids in Moving Containers[R]. Washington: NASA, 1966
|
[11] |
WEISLOGE M M, HSIEH K C. Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder[R]. Washington: NASA, 1998
|
[12] |
DAVIES R M, TAYLOR G I. The mechanics of large bubbles rising through extended liquids and through liquids in tubes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 1950, 200(1062): 375-390
|
[13] |
BERRY R L, TEGART J R. Experimental Study of Transient Liquid Motion in Orbiting Spacecraft[R]. Washington: NASA, 1975
|
[14] |
LABUS T L, MASICA W J. Liquid Reorientation in Spheres by Means of Low-G Accelerations[R]. Washington: NASA, 1968
|
[15] |
SALZMAN J A, MASICA W J. Experimental Investigation of Liquid-Propellant Reorientation[R]. Washington: NASA, 1967
|
[16] |
SALZMAN J A, MASICA W J, LACOVIC R F. Low Gravity Reorientation in A Scale-Model Centaur Liquid-Hydrogen Tank[R]. Washington: NASA, 1973
|
[17] |
HOCHSTEIN J I, PATAG A E, CHATO D J. Modeling of Impulsive Propellant Reorientation[R]. Washington: NASA, 1989
|
[18] |
PATAG A E, HOCHSTEIN J I, CHATO D J. Modeling of pulsed propellant reorientation[C]//Proceedings of the 25 th Joint Propulsion Conference. Monterey: American Institute of Aeronautics and Astronautics, 1989
|
[19] |
HOCHSTEIN J I, PATAG A E, KORAKIANITIS T P, et al. Pulsed thrust propellant reorientation: concept and modeling[J]. Journal of Propulsion and Power, 1992, 8(4): 770-777 doi: 10.2514/3.23548
|
[20] |
CONCUS P. Static menisci in a vertical right circular cylinder[J]. Journal of Fluid Mechanics, 1968, 34(3): 481-495 doi: 10.1017/S002211206800203X
|
[21] |
PETRASH D A, NELSON T M, OTTO E W. Effect of Surface Energy on the Liquid-Vapor Interface Configuration During Weightlessness[R]. Washington: NASA, 1963
|
[22] |
SIEGERT C E, PETRASH D A, OTTO E W. Time Response of Liquid-Vapor Interface After Entering Weightlessness[R]. Washington: NASA, 1964
|
[23] |
HOCKING L M. The damping of capillary–gravity waves at a rigid boundary[J]. Journal of Fluid Mechanics, 1987, 179: 253-266 doi: 10.1017/S0022112087001514
|
[24] |
KAUKLER W F. Fluid oscillation in the drop tower[J]. Metallurgical Transactions A, 1988, 19(11): 2625-2630 doi: 10.1007/BF02645793
|
[25] |
WOLK G, DREYER M, RATH H J, et al. Damped oscillations of a liquid/gas surface upon step reduction in gravity[J]. Journal of Spacecraft and Rockets, 1997, 34(1): 110-117 doi: 10.2514/2.3179
|
[26] |
MICHAELIS M, DREYER M E, RATH H J. Experimental investigation of the liquid interface reorientation upon step reduction in gravity[J]. Annals of the New York Academy of Sciences, 2002, 974(1): 246-260 doi: 10.1111/j.1749-6632.2002.tb05911.x
|
[27] |
MICHAELIS M, GERSTMANN J, DREYER M E, et al. Damping behavior of the free liquid interface oscillation upon step reduction in gravity[J]. Proceedings in Applied Mathematics and Mechanics, 2003, 2(1): 320-321 doi: 10.1002/pamm.200310144
|
[28] |
STIEF M, DREYER M. Experimental investigation of surface reorientation and oscillations of liquid nitrogen[C]//Proceedings of the 56 th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Fukuoka: American Institute of Aeronautics and Astronautics, 2005
|
[29] |
LI J C, LIN H, ZHAO J F, et al. Dynamic behaviors of liquid in partially filled tank in short-term microgravity[J]. Microgravity Science and Technology, 2018, 30(6): 849-856 doi: 10.1007/s12217-018-9642-5
|
[30] |
LI J C, LIN H, LI K, et al. Liquid sloshing in partially filled capsule storage tank undergoing gravity reduction to low/micro-gravity condition[J]. Microgravity Science and Technology, 2020, 32(4): 587-596 doi: 10.1007/s12217-020-09801-3
|
[31] |
LI J C, LIN H, LI K, et al. Dynamic behavior in a storage tank in reduced gravity using dynamic contact angle method[J]. Microgravity Science and Technology, 2020, 32(6): 1039-1048 doi: 10.1007/s12217-020-09831-x
|
[32] |
魏列, 杜王芳, 赵建福, 等. 微重力条件下部分充液贮箱气液界面波动特性的数值模拟[J]. 力学学报, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645
WEI Lie, DU Wangfang, ZHAO Jianfu, et al. Numerical study on gas-liquid interface waves in partially filled tanks under microgravity condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645
|
[33] |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225 doi: 10.1016/0021-9991(81)90145-5
|
[34] |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354 doi: 10.1016/0021-9991(92)90240-Y
|
[35] |
WEISLOGEL M M. Fluid interface phenomena in a low-gravity environment: recent results from drop tower experimentation[J]. Space Forum, 1998, 3: 59-86
|
[36] |
庄礼贤, 尹协远, 马晖扬. 流体力学[M]. 2版. 合肥: 中国科学技术大学出版社, 2009
ZHUANG Lixian, YIN Xieyuan, MA Huiyang. Fluid Mechanics[M]. 2 nd ed. Hefei: University of Science and Technology of China Press, 2009
|