Volume 44 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHOU Bin, XUE Yongliang, TAO Ran, CHENG Bingjun, WANG Zidong, ZHANG Haibo, WU Xinzhe. Design and Verification of Wide-band Search Coil Magnetometer Based on Transimpedance Preamplifier (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 169-177 doi: 10.11728/cjss2024.01.2022-0073
Citation: ZHOU Bin, XUE Yongliang, TAO Ran, CHENG Bingjun, WANG Zidong, ZHANG Haibo, WU Xinzhe. Design and Verification of Wide-band Search Coil Magnetometer Based on Transimpedance Preamplifier (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 169-177 doi: 10.11728/cjss2024.01.2022-0073

Design and Verification of Wide-band Search Coil Magnetometer Based on Transimpedance Preamplifier

doi: 10.11728/cjss2024.01.2022-0073 cstr: 32142.14.cjss2024.01.2022-0073
  • Received Date: 2023-03-20
  • Accepted Date: 2024-01-15
  • Rev Recd Date: 2023-05-25
  • Available Online: 2023-07-19
  • The search coil magnetometer is widely used in space exploration and geological prospecting due to its high sensitivity and low noise level. This study presents a search coil sensor based on a transimpedance preamplifier to achieve a wide frequency bandwidth. The sensor directly connects the output signal of the inductive coil to the transimpedance preamplifier, which converts the AC magnetic field signal into an electrical signal. A signal transfer model of a magnetic sensor based on a transimpedance preamplifier is established, and the theoretical formula for sensitivity and noise is deduced. The search coil sensor is designed and developed using this formula to achieve a bandwidth of 0.01~10 kHz and a noise level of 1 fT·Hz–1/2 at 1~10 kHz. A signal modulation method evaluates the sensor’s performance for efficient amplitude and phase extraction at a specific frequency. The dual sensor differential method eliminates environmental interference during sensor noise assessment, and a phase difference analysis evaluates the homologous frequency bands of signals detected by two probes. As a result, the sensor achieves a 1 fT·Hz–1/2 noise level in the 1 kHz to 10 kHz range.

     

  • loading
  • [1]
    TUMANSKI S. Induction coil sensors – a review[J]. Measurement Science and Technology, 2007, 18(3): R31 doi: 10.1088/0957-0233/18/3/R01
    [2]
    ROBERT P, CORNILLEAU-WEHRLIN N, PIBERNE R, et al. CLUSTER–STAFF search coil magnetometer calibration – comparisons with FGM[J]. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3(2): 153-177 doi: 10.5194/gi-3-153-2014
    [3]
    ROUX A, LE CONTEL O, COILLOT C, et al. The search coil magnetometer for THEMIS[J]. Space Science Reviews, 2008, 141(1/2/3/4): 265-275
    [4]
    PARROT M, BENOIST D, BERTHELIER J J, et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: scientific objectives, description and first results[J]. Planetary and Space Science, 2006, 54(5): 441-455 doi: 10.1016/j.pss.2005.10.015
    [5]
    CAO J B, ZENG L, ZHAN F, et al. The electromagnetic wave experiment for CSES mission: search coil magnetometer[J]. Science China Technological Sciences, 2018, 61(5): 653-658 doi: 10.1007/s11431-018-9241-7
    [6]
    WYGANT J R, BONNELL J W, GOETZ K, et al. The electric field and waves instruments on the radiation belt storm probes mission[J]. Space Science Reviews, 2013, 179(1/2/3/4): 183-220
    [7]
    BALE S D, GOETZ K, HARVEY P R, et al. The FIELDS instrument suite for solar probe plus: measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients[J]. Space Science Reviews, 2016, 204(1/2/3/4): 49-82
    [8]
    巨汉基, 朱万华, 方广有. 磁芯感应线圈传感器综述[J]. 地球物理学进展, 2010, 25(5): 1870-1876

    JU Hanji, ZHU Wanhua, FANG Guangyou. A review on ferromagnetic induction coil sensors[J]. Progress in Geophysics, 2010, 25(5): 1870-1876
    [9]
    刘凯, 米晓利, 朱万华, 等. 一种用于TEM高灵敏度感应式磁场传感器设计[J]. 地球物理学报, 2014, 57(10): 3485-3492 doi: 10.6038/cjg20141034

    LIU Kai, MI Xiaoli, ZHU Wanhua, et al. A design of high sensitivity induction magnetometer for TEM[J]. Chinese Journal of Geophysics, 2014, 57(10): 3485-3492 doi: 10.6038/cjg20141034
    [10]
    朱万华, 底青云, 刘雷松, 等. 基于磁通负反馈结构的高灵敏度感应式磁场传感器研制[J]. 地球物理学报, 2013, 56(11): 3683-3689 doi: 10.6038/cjg20131109

    ZHU Wanhua, DI Qingyun, LIU Leisong, et al. Development of search coil magnetometer based on magnetic flux negative feedback structure[J]. Chinese Journal of Geophysics, 2013, 56(11): 3683-3689 doi: 10.6038/cjg20131109
    [11]
    王勇, 佴磊, 牛建军, 等. 高灵敏度感应式磁传感器测试研究[J]. 地球物理学报, 2019, 62(10): 3760-3771 doi: 10.6038/cjg2019M0413

    WANG Yong, NAI Lei, NIU Jianjun, et al. Experimental study on high-sensitivity induction magnetometer[J]. Chinese Journal of Geophysics, 2019, 62(10): 3760-3771 doi: 10.6038/cjg2019M0413
    [12]
    COILLOT C, LEROY P. Induction magnetometers principle, modeling and ways of improvement[M]//KUANG K. Magnetic Sensors - Principles and Applications. Rijeka: InTech, 2012
    [13]
    OZAKI M, YAGITANI S, KOJIMA H, et al. Current-sensitive CMOS preamplifier for investigating space plasma waves by magnetic search coils[J]. IEEE Sensors Journal, 2014, 14(2): 421-429 doi: 10.1109/JSEN.2013.2284011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(333) PDF Downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return