Citation: | LUO Guanting, ZOU Yenan, CAI Yanxia. Automatic Generation of Artificial Space Weather Forecast Product Based on Sequence-to-sequence Model. Chinese Journal of Space Science, 2024, 44(1): 80-94 doi: 10.11728/cjss2024.01.2023-0029 |
[1] |
LILENSTEN J, BELEHAKI A. Developing the scientific basis for monitoring, modelling and predicting space weather[J]. Acta Geophysica, 2009, 57(1): 1-14 doi: 10.2478/s11600-008-0081-3
|
[2] |
SINGH A K, BHARGAWA A, SIINGH D, et al. Physics of space weather phenomena: a review[J]. Geosciences, 2021, 11(7): 286 doi: 10.3390/geosciences11070286
|
[3] |
GOLDBERG E, DRIEDGER N, KITTREDGE R I. Using natural-language processing to produce weather forecasts[J]. IEEE Expert, 1994, 9(2): 45-53 doi: 10.1109/64.294135
|
[4] |
REITER E, SRIPADA S G, HUNTER J, et al. Choosing words in computer-generated weather forecasts[J]. Artificial Intelligence, 2005, 167(1/2): 137-169
|
[5] |
XING X Y, WAN X J. Structure-aware pre-training for table-to-text generation[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Online: Association for Computational Linguistics, 2021: 2273-2278
|
[6] |
MEI H Y, BANSAL M, WALTER M R. What to talk about and how? Selective generation using LSTMs with coarse-to-fine alignment[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: NAACL, 2016: 720-730
|
[7] |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: Computational and Biological Learning Society, 2015
|
[8] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
|
[9] |
GU J T, LU Z D, LI H, et al. Incorporating copying mechanism in sequence-to-sequence learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin: Association for Computational Linguistics, 2016: 1631-1640
|
[10] |
WISEMAN S, SHIEBER S M, RUSH A M. Challenges in data-to-document generation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 2253-2263
|
[11] |
MA S M, YANG P C, LIU T Y, et al. Key fact as pivot: a two-stage model for low resource table-to-text generation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019: 2047-2057
|
[12] |
GONG H, SUN Y W, FENG X C, et al. TableGPT: few-shot table-to-text generation with table structure reconstruction and content matching[C]//Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: International Committee on Computational Linguistics, 2020: 1978-1988
|
[13] |
RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[OL]. [2019-02-15]. http://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
|
[14] |
SU Y X, MENG Z Q, BAKER S, et al. Few-shot table-to-text generation with prototype memory[C]//Findings of the Association for Computational Linguistics: EMNLP 2021. Punta Cana: Association for Computational Linguistics, 2021: 910-917
|
[15] |
BU X, LUO B, SHEN C, et al. Forecasting high‐speed solar wind streams based on solar extreme ultraviolet images[J]. Space Weather, 2019, 17(7): 1040-1058 doi: 10.1029/2019SW002186
|
[16] |
HOSSEINI-ASL E, MCCANN B, WU C S, et al. A simple language model for task-oriented dialogue[C]//Proceedings of the 34th Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020: 20179-20191
|
[17] |
ARUN A, BATRA S, BHARDWAJ V, et al. Best practices for data-efficient modeling in NLG: how to train production-ready neural models with less data[C]//Proceedings of the 28th International Conference on Computational Linguistics: Industry Track. Online: International Committee on Computational Linguistics, 2020: 64-77
|
[18] |
HE J X, KRYŚCIŃSKI W, MCCANN B, et al. CTRLsum: towards generic controllable text summarization[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi: Association for Computational Linguistics, 2022: 5879-5915
|
[19] |
LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 7871-7880
|
[20] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 6000-6010
|
[21] |
RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 140
|
[22] |
ROTHE S, NARAYAN S, SEVERYN A. Leveraging pre-trained checkpoints for sequence generation tasks[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 264-280 doi: 10.1162/tacl_a_00313
|
[23] |
RUMELHART D E, DURBIN R, GOLDEN R, et al. Backpropagation: the basic theory[M]//CHAUVIN Y, RUMELHART D E. Backpropagation: Theory, Architectures, and Applications. Hillsdale: Lawrence Erlbaum Associates, 1995: 1-34
|
[24] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego: Computational and Biological Learning Society, 2015
|
[25] |
HOLTZMAN A, BUYS J, DU L, et al. The curious case of neural text degeneration[C]//8th International Conference on Learning Representations. Addis Ababa: OpenReview. net, 2020
|
[26] |
CELIKYILMAZ A, CLARK E, GAO J F. Evaluation of text generation: a survey[OL]. arXiv preprint arXiv: 2006.14799, 2020
|
[27] |
LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]//Text Summarization Branches Out. Barcelona: Association for Computational Linguistics, 2004: 74-81
|
[28] |
PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia: ACM, 2002: 311-318
|
[29] |
CASCALLAR-FUENTES A, RAMOS-SOTO A, BUGARÍN A. Meta-heuristics for generation of linguistic descriptions of weather data: experimental comparison of two approaches[J]. Fuzzy Sets and Systems, 2022, 443: 173-202 doi: 10.1016/j.fss.2022.02.016
|
[30] |
CHEN Z Y, EAVANI H, CHEN W H, et al. Few-shot NLG with pre-trained language model[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 183-190
|
[31] |
LI L, MA C, YUE Y L, et al. Improving encoder by auxiliary supervision tasks for table-to-text generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Bangkok: Association for Computational Linguistics, 2021: 5979-5989
|
[32] |
VAN DER LEE C, GATT A, VAN MILTENBURG E, et al. Best practices for the human evaluation of automatically generated text[C]//Proceedings of the 12th International Conference on Natural Language Generation. Tokyo: Association for Computational Linguistics, 2019: 355-368
|