Citation: | WEI Sijia, HE Yuyang, LIU Tianyu, YANG Wei, LIN Yangting. History and Implications of Asteroid Exploration (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 19-50 doi: 10.11728/cjss2024.01.2024-yg02 |
[1] |
LAURINI K C, GERSTENMAIER W H. The global exploration roadmap and its significance for NASA[J]. Space Policy, 2014, 30(3): 149-155 doi: 10.1016/j.spacepol.2014.08.004
|
[2] |
中华人民共和国国务院新闻办公室. 《2016中国的航天》白皮书[EB/OL]. (2016-12-27)[2023-07-26]. http://www.scio.gov.cn/ztk/dtzt/34102/35723/index.html
The State Council Information Office of the People’s Republic of China. China’s Space Activities in 2016[EB/OL]. (2016-12-27)[2023-07-26]. http://www.scio.gov.cn/ztk/dtzt/34102/35723/index.html
|
[3] |
郑永春, 欧阳自远. 太阳系探测的发展趋势与科学问题分析[J]. 深空探测学报, 2014, 1(2): 83-92
ZHENG Yongchun, OUYANG Ziyuan. Development trend analysis of Solar System exploration and the scientific vision for future missions[J]. Journal of Deep Space Exploration, 2014, 1(2): 83-92
|
[4] |
唐红, 周传娇, 李雄耀, 等. 小行星表面有机物的红外光谱探测方法[J]. 空间科学学报, 2022, 42(1): 117-126 doi: 10.11728/cjss2022.01.201127103
TANG Hong, ZHOU Chuanjiao, LI Xiongyao, et al. Infrared spectroscopic detection of organic matter on the surface of asteroids[J]. Chinese Journal of Space Science, 2022, 42(1): 117-126 doi: 10.11728/cjss2022.01.201127103
|
[5] |
LIN Y T, ZHANG Y H, HU S, et al. Concepts of the small body sample return missions - the 1st 10 million year evolution of the solar system[J]. Space Science Reviews, 2020, 216(4): 45 doi: 10.1007/s11214-020-00670-1
|
[6] |
PEÑA-RAMOS J A, RAMÍREZ-DE LUIS F R. Resources in space and asteroid mining: where we are and which challenges should be expected[J]. International Journal of Technology Management, 2020, 82(3/4): 197-205
|
[7] |
徐伟彪, 赵海斌. 小行星深空探测的科学意义和展望[J]. 地球科学进展, 2005, 20(11): 1183-1190
XU Weibiao, ZHAO Haibin. Deep space exploration of asteroids: the science perspectives[J]. Advances in Earth Science, 2005, 20(11): 1183-1190
|
[8] |
CHENG A F, ATCHISON J, KANTSIPER B, et al. Asteroid impact and deflection assessment mission[J]. Acta Astronautica, 2015, 115: 262-269 doi: 10.1016/j.actaastro.2015.05.021
|
[9] |
潘教峰, 王海霞, 冷伏海, 等. 《2022研究前沿》——11个大学科领域发展趋势与重点研究问题[J]. 中国科学院院刊, 2023, 38(1): 154-166
PAN Jiaofeng, WANG Haixia, LENG Fuhai, et al. 2022 Research fronts: development trends and key research questions in 11 broad research areas[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 154-166
|
[10] |
国家航天局. 小行星探测任务有效载荷和搭载项目机遇公告[EB/OL]. (2019-04-19)[2023-08-17]
CNSA. Announcement of Opportunities for Scientific Payloads and Projects onboard Asteroid Exploration Mission. https://www.cnsa.gov.cn/english/n6465652/n6465653/c6805893/content.html[EB/OL]. (2019-04-19)[2023-08-17]
|
[11] |
CHEN Q. Near-Earth Asteroid Defense[R]. United Nations/China 2nd Global Partnership Workshop on Space Exploration and Innovation, 2022
|
[12] |
中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 30114.4-2014 空间科学及其应用术语 第4部分: 月球与行星科学[S]. 北京: 中国标准出版社, 2015
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 30114.4-2014 Terminology for space science and application—Part 4: lunar and planetary science[S]. Beijing: Standards Press of China, 2015
|
[13] |
李春来, 刘建军, 严韦, 等. 小行星探测科学目标进展与展望[J]. 深空探测学报, 2019, 6(5): 424-436
LI Chunlai, LIU Jianjun, YAN Wei, et al. Overview of scientific objectives for minor planets exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 424-436
|
[14] |
NASA. Asteroids[EB/OL]. (2022-12-15)[2023-09-02]. https://science.nasa.gov/solar-system/asteroids/
|
[15] |
International Astronomical Union. Minor Planet Center: Latest Published Data[EB/OL]. (2023-07-06)[2023-09-13]. https://minorplanetcenter.net/mpc/summary
|
[16] |
胡中为, 赵海斌. 太阳系考古遗存–小行星 [M]. 北京: 科学出版社, 2017
HU Zhongwei, ZHAO Haibin. Solar System Archaeological Remains: Minor Planet[M]. Beijing: Science Press, 2017
|
[17] |
谢欢, 陈杰, 童小华, 等. 小行星采样返回任务的选址方法进展与启发[J]. 同济大学学报(自然科学版), 2023, 51(7): 1010-1017,1032
XIE Huan, CHEN Jie, TONG Xiaohua, et al. Advances in site selection methods of asteroid sample return missions[J]. Journal of Tongji University (Natural Science), 2023, 51(7): 1010-1017,1032
|
[18] |
戴文赛, 胡中为. 论小行星的起源[J]. 天文学报, 1979, 20(1): 33-42
DAI Wensai, HU Zhongwei. On the origin of the asteroids[J]. Acta Astronomica Sinica, 1979, 20(1): 33-42
|
[19] |
戴文赛, 胡中文, 阎林册. 太阳系演化(下) [M]. 上海: 上海科学技术出版社, 1986
DAI Wensai, HU Zhongwei, YAN Lince. Solar System Evolution (Part 2) [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1986
|
[20] |
肖龙, 胡新宇. 行星地质学 [M]. 北京: 地质出版社, 2013
XIAO Long, HU Xinyu. Planetary Geology [M]. Beijing: Geology Press, 2013
|
[21] |
BRITT D T, YEOMANS D, HOUSEN K, et al. Asteroid Density, Porosity, and Structure [M]. Tucson: University of Arizona Press, 2002
|
[22] |
PRICE S D. The surface properties of asteroids[J]. Advances in Space Research, 2004, 33(9): 1548-1557 doi: 10.1016/S0273-1177(03)00453-8
|
[23] |
PIETERS C M, NOBLE S K. Space weathering on airless bodies[J]. Journal of Geophysical Research: Planets, 2016, 121(10): 1865-1884 doi: 10.1002/2016JE005128
|
[24] |
汪琦. 小行星与彗星—近地小行星、主带小行星和彗星之间相互关系探讨[J]. 紫金山天文台台刊, 1992, 11(2): 75-84
WANG Qi. Asteroids and comets—the relationship between near—Earth asteroids and main—belt asteroids and conets[J]. Publications of the Purple Mountain Observatory, 1992, 11(2): 75-84
|
[25] |
GREENSTREET S. Asteroids in the inner solar system[J]. Physics Today, 2021, 74(7): 42-47 doi: 10.1063/PT.3.4794
|
[26] |
HORNER J, EVANS N W, BAILEY M E. Simulations of the population of Centaurs-I. The bulk statistics[J]. Monthly Notices of the Royal Astronomical Society, 2004, 354(3): 798-810 doi: 10.1111/j.1365-2966.2004.08240.x
|
[27] |
SCHULZ R. Trans-neptunian objects[J]. The Astronomy and Astrophysics Review, 2002, 11(1): 1-31 doi: 10.1007/s001590100014
|
[28] |
GRADIE J, TEDESCO E. Compositional structure of the asteroid belt[J]. Science, 1982, 216(4553): 1405-1407 doi: 10.1126/science.216.4553.1405
|
[29] |
吴昀昭, 徐天弈, 温世博, 等. 小行星目标特性遥感探测[J]. 空间碎片研究, 2021, 21(4): 11-21
WU Yunzhao, XU Tianyi, WEN Shibo, et al. Remote sensing detection of asteroid target properties[J]. Space Debris Research, 2021, 21(4): 11-21
|
[30] |
THOLEN D J. Asteroid Taxonomy from Cluster Analysis of Photometry[D]. Tucson: University of Arizona, 1984
|
[31] |
GAFFEY M J, BELL J F, BROWN R H, et al. Mineralogical variations within the S-type asteroid class[J]. Icarus, 1993, 106(2): 573-602 doi: 10.1006/icar.1993.1194
|
[32] |
BUS S J, BINZEL R P. Phase II of the small main-belt asteroid spectroscopic survey A feature-based taxonomy[J]. Icarus, 2002, 158(1): 146-177 doi: 10.1006/icar.2002.6856
|
[33] |
DEMEO F E, BINZEL R P, SLIVAN S M, et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus, 2009, 202(1): 160-180 doi: 10.1016/j.icarus.2009.02.005
|
[34] |
KAUFMANN W J. Discovering the Universe [M]. New York: Freeman, 1987
|
[35] |
YAMAZAKI Y, YAZAWA H, HIRATA Y. Experimental study on freeze concentration with ice-lining[J]. Kagaku Kogaku Ronbunshu, 1998, 24(1): 30-36 doi: 10.1252/kakoronbunshu.24.30
|
[36] |
DEMEO F E, CARRY B. Solar System evolution from compositional mapping of the asteroid belt[J]. Nature, 2014, 505(7485): 629-634 doi: 10.1038/nature12908
|
[37] |
JIANG H X, JI J H. Thermophysical modeling of 20 Themis family asteroids with WISE/NEOWISE observations[J]. The Astronomical Journal, 2021, 162(2): 40 doi: 10.3847/1538-3881/ac01c8
|
[38] |
季江徽, 胡寿村. 太阳系小天体表面环境综述[J]. 航天器环境工程, 2019, 36(6): 519-532
JI Jianghui, HU Shoucun. A review of the surface environment of small bodies in solar system[J]. Spacecraft Environment Engineering, 2019, 36(6): 519-532
|
[39] |
NASA. Galileo-Overview[EB/OL]. (2021-07-09)[2023-08-04]. https://solarsystem.nasa.gov/missions/galileo/overview
|
[40] |
KIVELSON M G, BARGATZE L F, KHURANA K K, et al. Magnetic field signatures near Galileo’s closest approach to Gaspra[J]. Science, 1993, 261(5119): 331-334 doi: 10.1126/science.261.5119.331
|
[41] |
CARR M H, KIRK R L, MCEWEN A, et al. The geology of gaspra[J]. Icarus, 1994, 107(1): 61-71 doi: 10.1006/icar.1994.1006
|
[42] |
THOMAS P C, VEVERKA J, SIMONELLI D, et al. The shape of gaspra[J]. Icarus, 1994, 107(1): 23-36 doi: 10.1006/icar.1994.1004
|
[43] |
VEVERKA J, BELTON M, KLAASEN K, et al. Galileo’s encounter with 951 gaspra: overview[J]. Icarus, 1994, 107(1): 2-17 doi: 10.1006/icar.1994.1002
|
[44] |
D’AMBROSIO A, SCHIASSI E, CURTI F, et al. Physics-informed neural networks for optimal proximity maneuvers with collision avoidance around asteroids [C]//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. Big Sky: AAS/AIAA, 2021
|
[45] |
BELTON M J S, CHAPMAN C R, THOMAS P C, et al. Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl[J]. Nature, 1995, 374(6525): 785-788 doi: 10.1038/374785a0
|
[46] |
BELTON M J S, CHAPMAN C R, KLAASEN K P, et al. Galileo’s encounter with 243 Ida: an overview of the imaging experiment[J]. Icarus, 1996, 120(1): 1-19 doi: 10.1006/icar.1996.0032
|
[47] |
THOMAS P C, BELTON M J S, CARCICH B, et al. The shape of Ida[J]. Icarus, 1996, 120(1): 20-32 doi: 10.1006/icar.1996.0033
|
[48] |
CHAPMAN C R. S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo’s fly-bys of Gaspra and Ida[J]. Meteoritics & Planetary Science, 1996, 31(6): 699-725
|
[49] |
GRANAHAN J. A compositional study of asteroid 243 Ida and Dactyl from Galileo NIMS and SSI observations[J]. Journal of Geophysical Research: Planets, 2002, 107(E10): 5090
|
[50] |
NASA Photojournal of 2685 Masursky[EB/OL]. (2000-02-11)[2023-08-07]. https://photojournal.jpl.nasa.gov/catalog/PIA02449
|
[51] |
MASIERO J R, GRAV T, MAINZER A K, et al. Main-belt asteroids with wise/neowise: near-infrared albedos[J]. The Astrophysical Journal, 2014, 791(2): 121 doi: 10.1088/0004-637X/791/2/121
|
[52] |
NASA Jet Propulsion Laboratory (JPL). Small-Body Database Lookup[EB/OL]. [2023-11-15]. https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/
|
[53] |
LAZZARIN M, FORNASIER S, BARUCCI M A, et al. Groundbased investigation of asteroid 9969 Braille, target of the spacecraft mission Deep Space 1[J]. Astronomy & Astrophysics, 2001, 375(1): 281-284
|
[54] |
BURATTI B J, BRITT D T, SODERBLOM L A, et al. 9969 Braille: deep Space 1 infrared spectroscopy, geometric albedo, and classification[J]. Icarus, 2004, 167(1): 129-135 doi: 10.1016/j.icarus.2003.06.002
|
[55] |
DUXBURY T C, NEWBURN R L, ACTON C H, et al. Asteroid 5535 Annefrank size, shape, and orientation: stardust first results[J]. Journal of Geophysical Research: Planets, 2004, 109(E2): E02002
|
[56] |
STRYK T, STOOKE P J. The surface of asteroid 5535 Annefrank [C]//Proceedings of the 47th Lunar and Planetary Science Conference. Woodlands: LPI, 2016
|
[57] |
GOESMANN F, ROSENBAUER H, BREDEHÖFT J H, et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry[J]. Science, 2015, 349(6247): aab0689 doi: 10.1126/science.aab0689
|
[58] |
CAPACCIONI F, CORADINI A, FILACCHIONE G, et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta[J]. Science, 2015, 347(6220): aaa0628 doi: 10.1126/science.aaa0628
|
[59] |
ALTWEGG K, BALSIGER H, BAR-NUN A, et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio[J]. Science, 2015, 347(6220): 1261952 doi: 10.1126/science.1261952
|
[60] |
AUSTER H U, APATHY I, BERGHOFER G, et al. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko[J]. Science, 2015, 349(6247): aaa5102 doi: 10.1126/science.aaa5102
|
[61] |
KOFMAN W, HERIQUE A, BARBIN Y, et al. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar[J]. Science, 2015, 349(6247): aab0639 doi: 10.1126/science.aab0639
|
[62] |
LAMY P L, JORDA L, FORNASIER S, et al. Asteroid 2867 Steins III. Spitzer Space Telescope observations, size determination, and thermal properties[J]. Astronomy & Astrophysics, 2008, 487(3): 1187-1193
|
[63] |
DOTTO E, PERNA D, FORNASIER S, et al. Photometric and spectroscopic investigation of 2867 Steins, target of the Rosetta mission: ground-based results prior to the Rosetta fly-by[J]. Astronomy & Astrophysics, 2009, 494(3): L29-L32
|
[64] |
KELLER H U, BARBIERI C, KOSCHNY D, et al. E-type asteroid (2867) steins as imaged by OSIRIS on board Rosetta[J]. Science, 2010, 327(5962): 190-193 doi: 10.1126/science.1179559
|
[65] |
LEYRAT C, CORADINI A, ERARD S, et al. Thermal properties of the asteroid (2867) steins as observed by VIRTIS/Rosetta[J]. Astronomy & Astrophysics, 2011, 531: A168
|
[66] |
BARUCCI M A, CAPRIA M T, CORADINI A, et al. Classification of asteroids using G-mode analysis[J]. Icarus, 1987, 72(2): 304-324 doi: 10.1016/0019-1035(87)90177-1
|
[67] |
BIRLAN M, BARUCCI M A, VERNAZZA P, et al. Near-IR spectroscopy of asteroids 21 Lutetia, 89 Julia, 140 Siwa, 2181 Fogelin and 5480 (1989YK8), potential targets for the Rosetta mission; remote observations campaign on IRTF[J]. New Astronomy, 2004, 9(5): 343-351 doi: 10.1016/j.newast.2003.12.005
|
[68] |
BARUCCI M A, FULCHIGNONI M, ROSSI A. Rosetta asteroid targets: 2867 Steins and 21 Lutetia[J]. Space Science Reviews, 2007, 128(1/4): 67-78
|
[69] |
LAZZARIN M, MARCHI S, MOROZ L V, et al. New visible spectra and mineralogical assessment of (21) Lutetia, a target of the Rosetta mission[J]. Astronomy & Astrophysics, 2009, 498(1): 307-311
|
[70] |
OCKERT-BELL M E, CLARK B E, SHEPARD M K, et al. The composition of M-type asteroids: synthesis of spectroscopic and radar observations[J]. Icarus, 2010, 210(2): 674-692 doi: 10.1016/j.icarus.2010.08.002
|
[71] |
SIERKS H, LAMY P, BARBIERI C, et al. Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system[J]. Science, 2011, 334(6055): 487-490 doi: 10.1126/science.1207325
|
[72] |
STERN S A, WEAVER H A, SPENCER J R, et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object[J]. Science, 2019, 364(6441): eaaw9771 doi: 10.1126/science.aaw9771
|
[73] |
MCKINNON W B, RICHARDSON D C, MAROHNIC J C, et al. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt[J]. Science, 2020, 367(6481): eaay6620 doi: 10.1126/science.aay6620
|
[74] |
KEANE J T, PORTER S B, BEYER R A, et al. The Geophysical environment of (486958) Arrokoth-A small Kuiper belt object explored by New Horizons[J]. Journal of Geophysical Research: Planets, 2022, 127(6): e2021JE007068 doi: 10.1029/2021JE007068
|
[75] |
NASA. New Horizons[EB/OL]. (2022-10-05)[2023-08-05]. https://solarsystem.nasa.gov/missions/new-horizons/in-depth
|
[76] |
HUDSON R S, OSTRO S J, SCHEERES D J. High-resolution model of Asteroid 4179 Toutatis[J]. Icarus, 2003, 161(2): 346-355 doi: 10.1016/S0019-1035(02)00042-8
|
[77] |
HUANG J C, JI J H, YE P J, et al. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang’e-2[J]. Scientific Reports, 2013, 3(1): 3411 doi: 10.1038/srep03411
|
[78] |
ZHU M H, FA W Z, IP W H, et al. Morphology of asteroid (4179) Toutatis as imaged by Chang’E-2 spacecraft[J]. Geophysical Research Letters, 2014, 41(2): 328-333 doi: 10.1002/2013GL058914
|
[79] |
刘磊, 刘勇, 曹建峰, 等. “嫦娥二号”探测小行星任务转移轨道设计[J]. 宇航学报, 2014, 35(3): 262-268
LIU Lei, LIU Yong, CAO Jianfeng, et al. Mission design of the CHANG’E-2 asteroid exploration[J]. Journal of Astronautics, 2014, 35(3): 262-268
|
[80] |
HU S C, JI J H, RICHARDSON D C, et al. The formation mechanism of 4179 Toutatis’ elongated bilobed structure in a close Earth encounter scenario[J]. Monthly Notices of the Royal Astronomical Society, 2018, 478(1): 501-515 doi: 10.1093/mnras/sty1073
|
[81] |
JIANG Y, JI J H, HUANG J C, et al. Boulders on asteroid Toutatis as observed by Chang’e-2[J]. Scientific Reports, 2015, 5(1): 16029 doi: 10.1038/srep16029
|
[82] |
NASA. Discovery Program[EB/OL]. (2023-01-21)[2023-08-12]. https://www.nasa.gov/planetarymissions/discovery.html#Past
|
[83] |
NASA. NEAR Shoemaker[EB/OL]. (2022-10-28)[2023-08-12]. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-008A
|
[84] |
CHENG A F. Near Earth Asteroid Rendezvous: Mission Summary [M]. Tucson: The University of Arizona Press, 2002
|
[85] |
VEVERKA J, THOMAS P, HARCH A, et al. NEAR encounter with asteroid 253 mathilde: overview[J]. Icarus, 1999, 140(1): 3-16 doi: 10.1006/icar.1999.6120
|
[86] |
RIVKIN A S, CLARK B E, BRITT D T, et al. Infrared spectrophotometry of the NEAR flyby target 253 Mathilde[J]. Icarus, 1997, 127(1): 255-257 doi: 10.1006/icar.1997.5695
|
[87] |
ANDERSON B J, ACUÑA M H. Search for solar wind–asteroid interactions at Eros[J]. Advances in Space Research, 2004, 33(11): 1989-1995 doi: 10.1016/j.asr.2003.03.032
|
[88] |
LARSON H P, FINK U, TREFFERS R R, et al. The infrared spectrum of asteroid 433 Eros[J]. Icarus, 1976, 28(1): 95-103 doi: 10.1016/0019-1035(76)90091-9
|
[89] |
YEOMANS D K, ANTREASIAN P G, BARRIOT J P, et al. Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros[J]. Science, 2000, 289(5487): 2085-2088 doi: 10.1126/science.289.5487.2085
|
[90] |
VEVERKA J, ROBINSON M, THOMAS P, et al. NEAR at Eros: imaging and spectral results[J]. Science, 2000, 289(5487): 2088-2097 doi: 10.1126/science.289.5487.2088
|
[91] |
VEVERKA J, THOMAS P C, ROBINSON M, et al. Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith[J]. Science, 2001, 292(5516): 484-488 doi: 10.1126/science.1058651
|
[92] |
COLWELL J E, GULBIS A A S, HORÁNYI M, et al. Dust transport in photoelectron layers and the formation of dust ponds on Eros[J]. Icarus, 2005, 175(1): 159-169 doi: 10.1016/j.icarus.2004.11.001
|
[93] |
NASA. Hayabusa[EB/OL]. (2018-01-25)[2023-08-13]. https://solarsystem.nasa.gov/missions/hayabusa/in-depth
|
[94] |
NASA. Hayabusa Scientific Instruments[EB/OL]. (2007)[2023-08-13]. https://darts.isas.jaxa.jp/planet/project/hayabusa/instruments.html
|
[95] |
FUJIWARA A, KAWAGUCHI J, YEOMANS D K, et al. The Rubble-Pile asteroid Itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778): 1330-1334 doi: 10.1126/science.1125841
|
[96] |
ABE S, MUKAI T, HIRATA N, et al. Mass and local topography measurements of Itokawa by Hayabusa[J]. Science, 2006, 312(5778): 1344-1347 doi: 10.1126/science.1126272
|
[97] |
DEMURA H, KOBAYASHI S, NEMOTO E, et al. Pole and global shape of 25143 Itokawa[J]. Science, 2006, 312(5778): 1347-1349 doi: 10.1126/science.1126574
|
[98] |
KITAZATO K, ABE M, ISHIGURO M, et al. 25143 Itokawa: direct detection of the current decelerating spin state due to YORP effect[J]. Astronomy & Astrophysics, 2007, 472(1): L5-L8
|
[99] |
NAKAMURA T, NOGUCHI T, TANAKA M, et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites[J]. Science, 2011, 333(6046): 1113-1116 doi: 10.1126/science.1207758
|
[100] |
NAKAMURA T, NAKATO A, ISHIDA H, et al. Mineral chemistry of MUSES-C Regio inferred from analysis of dust particles collected from the first- and second-touchdown sites on asteroid Itokawa[J]. Meteoritics & Planetary Science, 2014, 49(2): 215-227
|
[101] |
EBIHARA M, SHIRAI N, SEKIMOTO S, et al. Chemical and mineralogical compositions of two grains recovered from asteroid Itokawa[J]. Meteoritics & Planetary Science, 2015, 50(2): 243-254
|
[102] |
YURIMOTO H, ABE K I, ABE M, et al. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission[J]. Science, 2011, 333(6046): 1116-1119 doi: 10.1126/science.1207776
|
[103] |
TSUCHIYAMA A, UESUGI M, UESUGI K, et al. Three dimensional structures of particles recovered from the asteroid Itokawa by the Hayabusa mission and a role of X-ray microtomography in the preliminary examination [C]//Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodsland: LPI, 2011
|
[104] |
TSUCHIYAMA A, UESUGI M, UESUGI K, et al. Three-dimensional microstructure of samples recovered from asteroid 25143 Itokawa: comparison with LL5 and LL6 chondrite particles[J]. Meteoritics & Planetary Science, 2014, 49(2): 172-187
|
[105] |
KITAJIMA F, KOTSUGI M, OHKOCHI T, et al. A micro-spectroscopic approach to the carbonaceous matter in the particles recovered by the Hayabusa mission [C]//Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodsland: LPI, 2011
|
[106] |
NARAOKA H, MITA H, HAMASE K, et al. Preliminary organic compound analysis of microparticles returned from Asteroid 25143 Itokawa by the Hayabusa mission[J]. Geochemical Journal, 2012, 46(1): 61-72 doi: 10.2343/geochemj.1.0134
|
[107] |
NARAOKA H, AOKI D, FUKUSHIMA K, et al. ToF-SIMS analysis of carbonaceous particles in the sample catcher of the Hayabusa spacecraft[J]. Earth, Planets and Space, 2015, 67(1): 1-9 doi: 10.1186/s40623-014-0143-5
|
[108] |
NOGUCHI T, NAKAMURA T, KIMURA M, et al. Incipient space weathering observed on the surface of Itokawa dust particles[J]. Science, 2011, 333(6046): 1121-1125 doi: 10.1126/science.1207794
|
[109] |
NOGUCHI T, KIMURA M, HASHIMOTO T, et al. Space weathered rims found on the surfaces of the Itokawa dust particles[J]. Meteoritics & Planetary Science, 2014, 49(2): 188-214
|
[110] |
NAGAO K, OKAZAKI R, NAKAMURA T, et al. Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples[J]. Science, 2011, 333(6046): 1128-1131 doi: 10.1126/science.1207785
|
[111] |
WAKITA S, NAKAMURA T, IKEDA T, et al. Thermal modeling for a parent body of Itokawa[J]. Meteoritics & Planetary Science, 2014, 49(2): 228-236
|
[112] |
NASA. Dawn Science Payload[EB/OL]. [2023-08-14]. https://solarsystem.nasa.gov/missions/dawn/technology/science-payload
|
[113] |
NASA. Dawn Objectives[EB/OL]. (2018-12-12)[2023-08-14]. https://solarsystem.nasa.gov/missions/dawn/mission/objectives
|
[114] |
RUSSELL C T, RAYMOND C A, CORADINI A, et al. Dawn at Vesta: testing the protoplanetary paradigm[J]. Science, 2012, 336(6082): 684-686 doi: 10.1126/science.1219381
|
[115] |
JAUMANN R, WILLIAMS D A, BUCZKOWSKI D L, et al. Vesta’s shape and morphology[J]. Science, 2012, 336(6082): 687-690 doi: 10.1126/science.1219122
|
[116] |
MARCHI S, MCSWEEN H Y, O’BRIEN D P, et al. The violent collisional history of asteroid 4 Vesta[J]. Science, 2012, 336(6082): 690-694 doi: 10.1126/science.1218757
|
[117] |
SCHENK P, O’BRIEN D P, MARCHI S, et al. The geologically recent giant impact basins at Vesta’s south pole[J]. Science, 2012, 336(6082): 694-697 doi: 10.1126/science.1223272
|
[118] |
ZUBER M T, MCSWEEN H Y, BINZEL R P, et al. Origin, internal structure and evolution of 4 Vesta[J]. Space Science Reviews, 2011, 163(1/4): 77-93
|
[119] |
DE SANCTIS M C, AMMANNITO E, CAPRIA M T, et al. Spectroscopic characterization of mineralogy and its diversity across Vesta[J]. Science, 2012, 336(6082): 697-700 doi: 10.1126/science.1219270
|
[120] |
WATANABE S I, TSUDA Y, YOSHIKAWA M, et al. Hayabusa 2 mission overview[J]. Space Science Reviews, 2017, 208(1/4): 3-16
|
[121] |
JAXA. Hayabusa2 Scientific Payloads[EB/OL]. [2023-08-15]. https://www.hayabusa2.jaxa.jp/mission/m_payloard/
|
[122] |
WATANABE S, HIRABAYASHI M, HIRATA N, et al. Hayabusa 2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile[J]. Science, 2019, 364(6437): 268-272 doi: 10.1126/science.aav8032
|
[123] |
KITAZATO K, MILLIKEN R E, IWATA T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa 2 near-infrared spectroscopy[J]. Science, 2019, 364(6437): 272-275 doi: 10.1126/science.aav7432
|
[124] |
HIRABAYASHI M, NAKANO R, TATSUMI E, et al. Spin-driven evolution of asteroids’ top-shapes at fast and slow spins seen from (101955) Bennu and (162173) Ryugu[J]. Icarus, 2020, 352: 113946 doi: 10.1016/j.icarus.2020.113946
|
[125] |
SUGITA S, HONDA R, MOROTA T, et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes[J]. Science, 2019, 364(6437): 252
|
[126] |
GROTT M, KNOLLENBERG J, HAMM M, et al. Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu[J]. Nature Astronomy, 2019, 3(11): 971-976 doi: 10.1038/s41550-019-0832-x
|
[127] |
NOGUCHI T, MATSUMOTO T, MIYAKE A, et al. A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu[J]. Nature Astronomy, 2023, 7(2): 170-181
|
[128] |
MOROTA T, SUGITA S, CHO Y, et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: implications for surface evolution[J]. Science, 2020, 368(6491): 654-659 doi: 10.1126/science.aaz6306
|
[129] |
TSUDA Y, SAIKI T, TERUI F, et al. Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu[J]. Acta Astronautica, 2020, 171: 42-54 doi: 10.1016/j.actaastro.2020.02.035
|
[130] |
JAXA. JAXA Hayabusa 2 Project Printed Material[EB/OL]. (2022-07-29)[2023-08-15]. https://www.hayabusa2.jaxa.jp/en/enjoy/material/
|
[131] |
YADA T, ABE M, OKADA T, et al. Preliminary analysis of the Hayabusa 2 samples returned from C-type asteroid Ryugu[J]. Nature Astronomy, 2021, 6(2): 214-220 doi: 10.1038/s41550-021-01550-6
|
[132] |
ITO M, TOMIOKA N, UESUGI M, et al. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample[J]. Nature Astronomy, 2022, 6(10): 1163-1171 doi: 10.1038/s41550-022-01745-5
|
[133] |
YOKOYAMA T, NAGASHIMA K, NAKAI I, et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites[J]. Science, 2023, 379(6634): eabn7850 doi: 10.1126/science.abn7850
|
[134] |
OKAZAKI R, MARTY B, BUSEMANN H, et al. Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution[J]. Science, 2022, 379(6634): eabo0431
|
[135] |
NAKAMURA E, KOBAYASHI K, TANAKA R, et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective[J]. Proceedings of the Japan Academy, Series B, 2022, 98(6): 227-282 doi: 10.2183/pjab.98.015
|
[136] |
NAKAMURA T, MATSUMOTO M, AMANO K, et al. Formation and evolution of carbonaceous asteroid Ryugu: direct evidence from returned samples[J]. Science, 2023, 379(6634): eabn8671 doi: 10.1126/science.abn8671
|
[137] |
NARAOKA H, TAKANO Y, DWORKIN J P, et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu[J]. Science, 2023, 379(6634): eabn9033 doi: 10.1126/science.abn9033
|
[138] |
YABUTA H, CODY G D, ENGRAND C, et al. Macromolecular organic matter in samples of the asteroid (162173) Ryugu[J]. Science, 2023, 379(6634): eabn9057 doi: 10.1126/science.abn9057
|
[139] |
OKAZAKI R, MIURA Y N, TAKANO Y, et al. First asteroid gas sample delivered by the Hayabusa 2 mission: a treasure box from Ryugu[J]. Science Advances, 2022, 8(46): eabo7239 doi: 10.1126/sciadv.abo7239
|
[140] |
LACZNIAK D L, THOMPSON M S, CHRISTOFFERSEN R, et al. Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses[J]. Icarus, 2021, 364: 114479 doi: 10.1016/j.icarus.2021.114479
|
[141] |
MICHEL P, BENZ W, TANGA P, et al. Collisions and gravitational reaccumulation: forming asteroid families and satellites[J]. Science, 2001, 294(5547): 1696-1700 doi: 10.1126/science.1065189
|
[142] |
OSTRO S J, PRAVEC P, BENNER L A M, et al. Radar and optical observations of asteroid 1998 KY26[J]. Science, 1999, 285(5427): 557-559 doi: 10.1126/science.285.5427.557
|
[143] |
NASA. OSIRIS-REx Overview[EB/OL]. (2021-08-12)[2023-08-16]. https://science.nasa.gov/mission/osiris-rex/
|
[144] |
LAURETTA D S, CONNOLLY JR H C, GROSSMAN J N, et al. OSIRIS-REx sample analysis plan - Revision 3.0[OL]. arXiv preprint arXiv: 2308.11794, 2023
|
[145] |
NASA. NASA Announces OSIRIS-REx Bulk Sample Mass[EB/OL]. (2024-02-15)[2024-02-20]. https://blogs.nasa.gov/osiris-rex/
|
[146] |
MICHEL P, BALLOUZ R L, BARNOUIN O S, et al. Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu[J]. Nature Communications, 2020, 11(1): 2655 doi: 10.1038/s41467-020-16433-z
|
[147] |
BARNOUIN O S, DALY M G, PALMER E E, et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness[J]. Nature Geoscience, 2019, 12(4): 247-252 doi: 10.1038/s41561-019-0330-x
|
[148] |
DELLAGIUSTINA D N, EMERY J P, GOLISH D R, et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Nature Astronomy, 2019, 3(4): 341-351 doi: 10.1038/s41550-019-0731-1
|
[149] |
CAMBIONI S, DELBO M, POGGIALI G, et al. Fine-regolith production on asteroids controlled by rock porosity[J]. Nature, 2021, 598(7879): 49-52 doi: 10.1038/s41586-021-03816-5
|
[150] |
WALSH K J, JAWIN E R, BALLOUZ R L, et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12(4): 242-246 doi: 10.1038/s41561-019-0326-6
|
[151] |
BALLOUZ R L, WALSH K J, BARNOUIN O S, et al. Bennu’s near-Earth lifetime of 1.75 million years inferred from craters on its boulders[J]. Nature, 2020, 587(7833): 205-209 doi: 10.1038/s41586-020-2846-z
|
[152] |
HAMILTON V E, SIMON A A, CHRISTENSEN P R, et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu[J]. Nature Astronomy, 2019, 3(4): 332-340 doi: 10.1038/s41550-019-0722-2
|
[153] |
SIMON A A, KAPLAN H H, CLOUTIS E, et al. Weak spectral features on (101995) Bennu from the OSIRIS-REx Visible and Infrared Spectrometer[J]. Astronomy & Astrophysics, 2020, 644: A148
|
[154] |
KIM Y, DEMARTINI J V, RICHARDSON D C, et al. Tidal resurfacing model for (99942) Apophis during the 2029 close approach with Earth[J]. Monthly Notices of the Royal Astronomical Society, 2023, 520(3): 3405-3415 doi: 10.1093/mnras/stad351
|
[155] |
DELLAGIUSTINA D N, NOLAN M C, POLIT A T, et al. OSIRIS-APEX: an OSIRIS-REx extended mission to asteroid apophis[J]. The Planetary Science Journal, 2023, 4(10): 198 doi: 10.3847/PSJ/acf75e
|
[156] |
NOLAN M C, GOLISH D R, GUZEWICH S, et al. OSIRIS-APEX: an OSIRIS-REx extended mission to Apophis [C]//Proceedings of the Asteroids, Comets, Meteors Conference 2023. Arizona: Lunar and Planetary Institute, 2023
|
[157] |
NASA. Apophis-Solar System Exploration[EB/OL]. (2022-09-27)[2023-08-19]. https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/apophis/in-depth
|
[158] |
MCFADDEN K D, MAINZER A K, MASIERO J R, et al. Size and albedo constraints for (152830) dinkinesh using WISE data[J]. The Astrophysical Journal Letters, 2023, 957(1): L2 doi: 10.3847/2041-8213/acff61
|
[159] |
MOTTOLA S, HELLMICH S, BUIE M W, et al. Shape models of Lucy targets (3548) Eurybates and (21900) Orus from disk-integrated photometry[J]. The Planetary Science Journal, 2023, 4(1): 18 doi: 10.3847/PSJ/acaf79
|
[160] |
BUIE M W, OLKIN C B, MERLINE W J, et al. Size and shape from stellar occultation observations of the double Jupiter Trojan Patroclus and Menoetius[J]. The Astronomical Journal, 2015, 149(3): 113 doi: 10.1088/0004-6256/149/3/113
|
[161] |
NASA. Lucy Media Resources[EB/OL]. (2021-10-08)[2023-08-17]. http://www.nasa.govmission_pages/lucy/news/index
|
[162] |
CHENG A F, RIVKIN A S, MICHEL P, et al. AIDA DART asteroid deflection test: planetary defense and science objectives[J]. Planetary and Space Science, 2018, 157: 104-115 doi: 10.1016/j.pss.2018.02.015
|
[163] |
DALY R T, ERNST C M, BARNOUIN O S, et al. Successful kinetic impact into an asteroid for planetary defence[J]. Nature, 2023, 616(7957): 443-447 doi: 10.1038/s41586-023-05810-5
|
[164] |
NASA. DART Press Kit[EB/OL]. (2021-11-02)[2023-08-16]. https://dart.jhuapl.edu/Press-Kit/index.php
|
[165] |
CHENG A F, AGRUSA H F, BARBEE B W, et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos[J]. Nature, 2023, 616(7957): 457-460 doi: 10.1038/s41586-023-05878-z
|
[166] |
RIVKIN A S, CHENG A F. Planetary defense with the Double Asteroid Redirection Test (DART) mission and prospects[J]. Nature Communications, 2023, 14(1): 1003 doi: 10.1038/s41467-022-35561-2
|
[167] |
THOMAS C A, NAIDU S P, SCHEIRICH P, et al. Orbital Period change of Dimorphos due to the DART kinetic impact[J]. Nature, 2023, 616(7957): 448-451 doi: 10.1038/s41586-023-05805-2
|
[168] |
NASA. Psyche Mission[EB/OL]. (2021-10-02)[2023-08-17]. https://psyche.asu.edu/scienc/
|
[169] |
MICHEL P, KÜPPERS M, BAGATIN A C, et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos[J]. The Planetary Science Journal, 2022, 3(7): 160 doi: 10.3847/PSJ/ac6f52
|
[170] |
JAXA. ドイツ航空宇宙センター (DLR) との共同記者会見| ファン!ファン!JAXA![EB/OL]. (2017-09-20)[2023-08-17]. https://fanfun.jaxa.jp/jaxatv/detail/10700.html
JAXA. Joint press conference with the German Aerospace Center (DLR)[EB/OL]. (2017-09-20)[2023-08-17]. https://fanfun.jaxa.jp/jaxatv/detail/10700.html
|
[171] |
HU S C, LI B, JIANG H X, et al. Peculiar orbital characteristics of earth quasi-satellite 469219 Kamo`oalewa: implications for the Yarkovsky detection and orbital uncertainty propagation[J]. The Astronomical Journal, 2023, 166(4): 178 doi: 10.3847/1538-3881/acf8cc
|
[172] |
SHARKEY B N L, REDDY V, MALHOTRA R, et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamo`oalewa[J]. Communications Earth & Environment, 2021, 2(1): 231
|
[173] |
YADA T, FUJIMURA A, ABE M, et al. Hayabusa-returned sample curation in the planetary material sample curation facility of JAXA[J]. Meteoritics & Planetary Science, 2014, 49(2): 135-153
|
[174] |
张夏冬, 谷渊涛, 赵良. 国际地外样品储存与管理状态的对比和启示[J]. 南京大学学报(自然科学), 2021, 57(6): 971-980
ZHANG Xiadong, GU Yuantao, ZHAO Liang. Comparison of storage and management for international extraterrestrial samples and their implications[J]. Journal of Nanjing University (Natural Science), 2021, 57(6): 971-980
|
[175] |
YOSHIKAWA M, KAWAGUCHI J, FUJIWARA A, et al. The Hayabusa mission [M]//LONGOBARDO A. Sample Return Missions. Amsterdam: Elsevier, 2021: 123-146
|
[176] |
RIGHTER K, LUNNING N G, NAKAMURA‐MESSENGER K, et al. Curation planning and facilities for asteroid Bennu samples returned by the OSIRIS‐REx mission[J]. Meteoritics & Planetary Science, 2023, 58(4): 572-590
|
[177] |
TSUCHIYAMA A, MATSUMOTO T, NAGANO T, et al. Microstructures of voids in itokawa particles collected by hayabusa [C]//75th Annual Meeting of the Meteoritical Society. Cairns: Lunar and Planetary Institute, 2012
|
[178] |
EBIHARA M, SEKIMOTO S, SHIRAI N, et al. Neutron activation analysis of a particle returned from asteroid Itokawa[J]. Science, 2011, 333(6046): 1119-1121 doi: 10.1126/science.1207865
|