Volume 44 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WEI Sijia, HE Yuyang, LIU Tianyu, YANG Wei, LIN Yangting. History and Implications of Asteroid Exploration (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 19-50 doi: 10.11728/cjss2024.01.2024-yg02
Citation: WEI Sijia, HE Yuyang, LIU Tianyu, YANG Wei, LIN Yangting. History and Implications of Asteroid Exploration (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 19-50 doi: 10.11728/cjss2024.01.2024-yg02

History and Implications of Asteroid Exploration

doi: 10.11728/cjss2024.01.2024-yg02 cstr: 32142.14.cjss2024.01.2024-yg02
  • Received Date: 2023-11-15
  • Rev Recd Date: 2024-01-10
  • Available Online: 2024-02-21
  • Since 1989, the Galileo spacecraft has passed asteroids 951 Gaspra and 243 Ida on its journey to Jupiter, with asteroid exploration gradually becoming a crucial aspect of deep space exploration for major aerospace nations. Over the past three decades, the asteroid exploration has evolved from mere flybys to targeted explorations, and eventually to sample return missions. During the process, the types of targets have become more diverse, and the objectives have shifted from purely scientific exploration to asteroid defense and resource utilization. In 2025, China plans the Tianwen-2 asteroid exploration mission and its first asteroid defense mission. To better serve China’s future missions, this paper reviews the asteroid exploration history, their scientific goals, payloads, and scientific contributions. For sample return missions, a detailed review of sample storage and distribution management was provided, as well as the preliminary ground laboratory analysis of Hayabusa and Hayabusa 2, and OSIRIS-REx missions. Planning low-cost, high-freguency sample-return missions, reinforcing mission collaborations,and establishing scientific design teams can better serve China’s future asteroid explorations.

     

  • loading
  • [1]
    LAURINI K C, GERSTENMAIER W H. The global exploration roadmap and its significance for NASA[J]. Space Policy, 2014, 30(3): 149-155 doi: 10.1016/j.spacepol.2014.08.004
    [2]
    中华人民共和国国务院新闻办公室. 《2016中国的航天》白皮书[EB/OL]. (2016-12-27)[2023-07-26]. http://www.scio.gov.cn/ztk/dtzt/34102/35723/index.html

    The State Council Information Office of the People’s Republic of China. China’s Space Activities in 2016[EB/OL]. (2016-12-27)[2023-07-26]. http://www.scio.gov.cn/ztk/dtzt/34102/35723/index.html
    [3]
    郑永春, 欧阳自远. 太阳系探测的发展趋势与科学问题分析[J]. 深空探测学报, 2014, 1(2): 83-92

    ZHENG Yongchun, OUYANG Ziyuan. Development trend analysis of Solar System exploration and the scientific vision for future missions[J]. Journal of Deep Space Exploration, 2014, 1(2): 83-92
    [4]
    唐红, 周传娇, 李雄耀, 等. 小行星表面有机物的红外光谱探测方法[J]. 空间科学学报, 2022, 42(1): 117-126 doi: 10.11728/cjss2022.01.201127103

    TANG Hong, ZHOU Chuanjiao, LI Xiongyao, et al. Infrared spectroscopic detection of organic matter on the surface of asteroids[J]. Chinese Journal of Space Science, 2022, 42(1): 117-126 doi: 10.11728/cjss2022.01.201127103
    [5]
    LIN Y T, ZHANG Y H, HU S, et al. Concepts of the small body sample return missions - the 1st 10 million year evolution of the solar system[J]. Space Science Reviews, 2020, 216(4): 45 doi: 10.1007/s11214-020-00670-1
    [6]
    PEÑA-RAMOS J A, RAMÍREZ-DE LUIS F R. Resources in space and asteroid mining: where we are and which challenges should be expected[J]. International Journal of Technology Management, 2020, 82(3/4): 197-205
    [7]
    徐伟彪, 赵海斌. 小行星深空探测的科学意义和展望[J]. 地球科学进展, 2005, 20(11): 1183-1190

    XU Weibiao, ZHAO Haibin. Deep space exploration of asteroids: the science perspectives[J]. Advances in Earth Science, 2005, 20(11): 1183-1190
    [8]
    CHENG A F, ATCHISON J, KANTSIPER B, et al. Asteroid impact and deflection assessment mission[J]. Acta Astronautica, 2015, 115: 262-269 doi: 10.1016/j.actaastro.2015.05.021
    [9]
    潘教峰, 王海霞, 冷伏海, 等. 《2022研究前沿》——11个大学科领域发展趋势与重点研究问题[J]. 中国科学院院刊, 2023, 38(1): 154-166

    PAN Jiaofeng, WANG Haixia, LENG Fuhai, et al. 2022 Research fronts: development trends and key research questions in 11 broad research areas[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 154-166
    [10]
    国家航天局. 小行星探测任务有效载荷和搭载项目机遇公告[EB/OL]. (2019-04-19)[2023-08-17]

    CNSA. Announcement of Opportunities for Scientific Payloads and Projects onboard Asteroid Exploration Mission. https://www.cnsa.gov.cn/english/n6465652/n6465653/c6805893/content.html[EB/OL]. (2019-04-19)[2023-08-17]
    [11]
    CHEN Q. Near-Earth Asteroid Defense[R]. United Nations/China 2nd Global Partnership Workshop on Space Exploration and Innovation, 2022
    [12]
    中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 30114.4-2014 空间科学及其应用术语 第4部分: 月球与行星科学[S]. 北京: 中国标准出版社, 2015

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 30114.4-2014 Terminology for space science and application—Part 4: lunar and planetary science[S]. Beijing: Standards Press of China, 2015
    [13]
    李春来, 刘建军, 严韦, 等. 小行星探测科学目标进展与展望[J]. 深空探测学报, 2019, 6(5): 424-436

    LI Chunlai, LIU Jianjun, YAN Wei, et al. Overview of scientific objectives for minor planets exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 424-436
    [14]
    NASA. Asteroids[EB/OL]. (2022-12-15)[2023-09-02]. https://science.nasa.gov/solar-system/asteroids/
    [15]
    International Astronomical Union. Minor Planet Center: Latest Published Data[EB/OL]. (2023-07-06)[2023-09-13]. https://minorplanetcenter.net/mpc/summary
    [16]
    胡中为, 赵海斌. 太阳系考古遗存–小行星 [M]. 北京: 科学出版社, 2017

    HU Zhongwei, ZHAO Haibin. Solar System Archaeological Remains: Minor Planet[M]. Beijing: Science Press, 2017
    [17]
    谢欢, 陈杰, 童小华, 等. 小行星采样返回任务的选址方法进展与启发[J]. 同济大学学报(自然科学版), 2023, 51(7): 1010-1017,1032

    XIE Huan, CHEN Jie, TONG Xiaohua, et al. Advances in site selection methods of asteroid sample return missions[J]. Journal of Tongji University (Natural Science), 2023, 51(7): 1010-1017,1032
    [18]
    戴文赛, 胡中为. 论小行星的起源[J]. 天文学报, 1979, 20(1): 33-42

    DAI Wensai, HU Zhongwei. On the origin of the asteroids[J]. Acta Astronomica Sinica, 1979, 20(1): 33-42
    [19]
    戴文赛, 胡中文, 阎林册. 太阳系演化(下) [M]. 上海: 上海科学技术出版社, 1986

    DAI Wensai, HU Zhongwei, YAN Lince. Solar System Evolution (Part 2) [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1986
    [20]
    肖龙, 胡新宇. 行星地质学 [M]. 北京: 地质出版社, 2013

    XIAO Long, HU Xinyu. Planetary Geology [M]. Beijing: Geology Press, 2013
    [21]
    BRITT D T, YEOMANS D, HOUSEN K, et al. Asteroid Density, Porosity, and Structure [M]. Tucson: University of Arizona Press, 2002
    [22]
    PRICE S D. The surface properties of asteroids[J]. Advances in Space Research, 2004, 33(9): 1548-1557 doi: 10.1016/S0273-1177(03)00453-8
    [23]
    PIETERS C M, NOBLE S K. Space weathering on airless bodies[J]. Journal of Geophysical Research: Planets, 2016, 121(10): 1865-1884 doi: 10.1002/2016JE005128
    [24]
    汪琦. 小行星与彗星—近地小行星、主带小行星和彗星之间相互关系探讨[J]. 紫金山天文台台刊, 1992, 11(2): 75-84

    WANG Qi. Asteroids and comets—the relationship between near—Earth asteroids and main—belt asteroids and conets[J]. Publications of the Purple Mountain Observatory, 1992, 11(2): 75-84
    [25]
    GREENSTREET S. Asteroids in the inner solar system[J]. Physics Today, 2021, 74(7): 42-47 doi: 10.1063/PT.3.4794
    [26]
    HORNER J, EVANS N W, BAILEY M E. Simulations of the population of Centaurs-I. The bulk statistics[J]. Monthly Notices of the Royal Astronomical Society, 2004, 354(3): 798-810 doi: 10.1111/j.1365-2966.2004.08240.x
    [27]
    SCHULZ R. Trans-neptunian objects[J]. The Astronomy and Astrophysics Review, 2002, 11(1): 1-31 doi: 10.1007/s001590100014
    [28]
    GRADIE J, TEDESCO E. Compositional structure of the asteroid belt[J]. Science, 1982, 216(4553): 1405-1407 doi: 10.1126/science.216.4553.1405
    [29]
    吴昀昭, 徐天弈, 温世博, 等. 小行星目标特性遥感探测[J]. 空间碎片研究, 2021, 21(4): 11-21

    WU Yunzhao, XU Tianyi, WEN Shibo, et al. Remote sensing detection of asteroid target properties[J]. Space Debris Research, 2021, 21(4): 11-21
    [30]
    THOLEN D J. Asteroid Taxonomy from Cluster Analysis of Photometry[D]. Tucson: University of Arizona, 1984
    [31]
    GAFFEY M J, BELL J F, BROWN R H, et al. Mineralogical variations within the S-type asteroid class[J]. Icarus, 1993, 106(2): 573-602 doi: 10.1006/icar.1993.1194
    [32]
    BUS S J, BINZEL R P. Phase II of the small main-belt asteroid spectroscopic survey A feature-based taxonomy[J]. Icarus, 2002, 158(1): 146-177 doi: 10.1006/icar.2002.6856
    [33]
    DEMEO F E, BINZEL R P, SLIVAN S M, et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus, 2009, 202(1): 160-180 doi: 10.1016/j.icarus.2009.02.005
    [34]
    KAUFMANN W J. Discovering the Universe [M]. New York: Freeman, 1987
    [35]
    YAMAZAKI Y, YAZAWA H, HIRATA Y. Experimental study on freeze concentration with ice-lining[J]. Kagaku Kogaku Ronbunshu, 1998, 24(1): 30-36 doi: 10.1252/kakoronbunshu.24.30
    [36]
    DEMEO F E, CARRY B. Solar System evolution from compositional mapping of the asteroid belt[J]. Nature, 2014, 505(7485): 629-634 doi: 10.1038/nature12908
    [37]
    JIANG H X, JI J H. Thermophysical modeling of 20 Themis family asteroids with WISE/NEOWISE observations[J]. The Astronomical Journal, 2021, 162(2): 40 doi: 10.3847/1538-3881/ac01c8
    [38]
    季江徽, 胡寿村. 太阳系小天体表面环境综述[J]. 航天器环境工程, 2019, 36(6): 519-532

    JI Jianghui, HU Shoucun. A review of the surface environment of small bodies in solar system[J]. Spacecraft Environment Engineering, 2019, 36(6): 519-532
    [39]
    NASA. Galileo-Overview[EB/OL]. (2021-07-09)[2023-08-04]. https://solarsystem.nasa.gov/missions/galileo/overview
    [40]
    KIVELSON M G, BARGATZE L F, KHURANA K K, et al. Magnetic field signatures near Galileo’s closest approach to Gaspra[J]. Science, 1993, 261(5119): 331-334 doi: 10.1126/science.261.5119.331
    [41]
    CARR M H, KIRK R L, MCEWEN A, et al. The geology of gaspra[J]. Icarus, 1994, 107(1): 61-71 doi: 10.1006/icar.1994.1006
    [42]
    THOMAS P C, VEVERKA J, SIMONELLI D, et al. The shape of gaspra[J]. Icarus, 1994, 107(1): 23-36 doi: 10.1006/icar.1994.1004
    [43]
    VEVERKA J, BELTON M, KLAASEN K, et al. Galileo’s encounter with 951 gaspra: overview[J]. Icarus, 1994, 107(1): 2-17 doi: 10.1006/icar.1994.1002
    [44]
    D’AMBROSIO A, SCHIASSI E, CURTI F, et al. Physics-informed neural networks for optimal proximity maneuvers with collision avoidance around asteroids [C]//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. Big Sky: AAS/AIAA, 2021
    [45]
    BELTON M J S, CHAPMAN C R, THOMAS P C, et al. Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl[J]. Nature, 1995, 374(6525): 785-788 doi: 10.1038/374785a0
    [46]
    BELTON M J S, CHAPMAN C R, KLAASEN K P, et al. Galileo’s encounter with 243 Ida: an overview of the imaging experiment[J]. Icarus, 1996, 120(1): 1-19 doi: 10.1006/icar.1996.0032
    [47]
    THOMAS P C, BELTON M J S, CARCICH B, et al. The shape of Ida[J]. Icarus, 1996, 120(1): 20-32 doi: 10.1006/icar.1996.0033
    [48]
    CHAPMAN C R. S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo’s fly-bys of Gaspra and Ida[J]. Meteoritics & Planetary Science, 1996, 31(6): 699-725
    [49]
    GRANAHAN J. A compositional study of asteroid 243 Ida and Dactyl from Galileo NIMS and SSI observations[J]. Journal of Geophysical Research: Planets, 2002, 107(E10): 5090
    [50]
    NASA Photojournal of 2685 Masursky[EB/OL]. (2000-02-11)[2023-08-07]. https://photojournal.jpl.nasa.gov/catalog/PIA02449
    [51]
    MASIERO J R, GRAV T, MAINZER A K, et al. Main-belt asteroids with wise/neowise: near-infrared albedos[J]. The Astrophysical Journal, 2014, 791(2): 121 doi: 10.1088/0004-637X/791/2/121
    [52]
    NASA Jet Propulsion Laboratory (JPL). Small-Body Database Lookup[EB/OL]. [2023-11-15]. https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/
    [53]
    LAZZARIN M, FORNASIER S, BARUCCI M A, et al. Groundbased investigation of asteroid 9969 Braille, target of the spacecraft mission Deep Space 1[J]. Astronomy & Astrophysics, 2001, 375(1): 281-284
    [54]
    BURATTI B J, BRITT D T, SODERBLOM L A, et al. 9969 Braille: deep Space 1 infrared spectroscopy, geometric albedo, and classification[J]. Icarus, 2004, 167(1): 129-135 doi: 10.1016/j.icarus.2003.06.002
    [55]
    DUXBURY T C, NEWBURN R L, ACTON C H, et al. Asteroid 5535 Annefrank size, shape, and orientation: stardust first results[J]. Journal of Geophysical Research: Planets, 2004, 109(E2): E02002
    [56]
    STRYK T, STOOKE P J. The surface of asteroid 5535 Annefrank [C]//Proceedings of the 47th Lunar and Planetary Science Conference. Woodlands: LPI, 2016
    [57]
    GOESMANN F, ROSENBAUER H, BREDEHÖFT J H, et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry[J]. Science, 2015, 349(6247): aab0689 doi: 10.1126/science.aab0689
    [58]
    CAPACCIONI F, CORADINI A, FILACCHIONE G, et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta[J]. Science, 2015, 347(6220): aaa0628 doi: 10.1126/science.aaa0628
    [59]
    ALTWEGG K, BALSIGER H, BAR-NUN A, et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio[J]. Science, 2015, 347(6220): 1261952 doi: 10.1126/science.1261952
    [60]
    AUSTER H U, APATHY I, BERGHOFER G, et al. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko[J]. Science, 2015, 349(6247): aaa5102 doi: 10.1126/science.aaa5102
    [61]
    KOFMAN W, HERIQUE A, BARBIN Y, et al. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar[J]. Science, 2015, 349(6247): aab0639 doi: 10.1126/science.aab0639
    [62]
    LAMY P L, JORDA L, FORNASIER S, et al. Asteroid 2867 Steins III. Spitzer Space Telescope observations, size determination, and thermal properties[J]. Astronomy & Astrophysics, 2008, 487(3): 1187-1193
    [63]
    DOTTO E, PERNA D, FORNASIER S, et al. Photometric and spectroscopic investigation of 2867 Steins, target of the Rosetta mission: ground-based results prior to the Rosetta fly-by[J]. Astronomy & Astrophysics, 2009, 494(3): L29-L32
    [64]
    KELLER H U, BARBIERI C, KOSCHNY D, et al. E-type asteroid (2867) steins as imaged by OSIRIS on board Rosetta[J]. Science, 2010, 327(5962): 190-193 doi: 10.1126/science.1179559
    [65]
    LEYRAT C, CORADINI A, ERARD S, et al. Thermal properties of the asteroid (2867) steins as observed by VIRTIS/Rosetta[J]. Astronomy & Astrophysics, 2011, 531: A168
    [66]
    BARUCCI M A, CAPRIA M T, CORADINI A, et al. Classification of asteroids using G-mode analysis[J]. Icarus, 1987, 72(2): 304-324 doi: 10.1016/0019-1035(87)90177-1
    [67]
    BIRLAN M, BARUCCI M A, VERNAZZA P, et al. Near-IR spectroscopy of asteroids 21 Lutetia, 89 Julia, 140 Siwa, 2181 Fogelin and 5480 (1989YK8), potential targets for the Rosetta mission; remote observations campaign on IRTF[J]. New Astronomy, 2004, 9(5): 343-351 doi: 10.1016/j.newast.2003.12.005
    [68]
    BARUCCI M A, FULCHIGNONI M, ROSSI A. Rosetta asteroid targets: 2867 Steins and 21 Lutetia[J]. Space Science Reviews, 2007, 128(1/4): 67-78
    [69]
    LAZZARIN M, MARCHI S, MOROZ L V, et al. New visible spectra and mineralogical assessment of (21) Lutetia, a target of the Rosetta mission[J]. Astronomy & Astrophysics, 2009, 498(1): 307-311
    [70]
    OCKERT-BELL M E, CLARK B E, SHEPARD M K, et al. The composition of M-type asteroids: synthesis of spectroscopic and radar observations[J]. Icarus, 2010, 210(2): 674-692 doi: 10.1016/j.icarus.2010.08.002
    [71]
    SIERKS H, LAMY P, BARBIERI C, et al. Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system[J]. Science, 2011, 334(6055): 487-490 doi: 10.1126/science.1207325
    [72]
    STERN S A, WEAVER H A, SPENCER J R, et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object[J]. Science, 2019, 364(6441): eaaw9771 doi: 10.1126/science.aaw9771
    [73]
    MCKINNON W B, RICHARDSON D C, MAROHNIC J C, et al. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt[J]. Science, 2020, 367(6481): eaay6620 doi: 10.1126/science.aay6620
    [74]
    KEANE J T, PORTER S B, BEYER R A, et al. The Geophysical environment of (486958) Arrokoth-A small Kuiper belt object explored by New Horizons[J]. Journal of Geophysical Research: Planets, 2022, 127(6): e2021JE007068 doi: 10.1029/2021JE007068
    [75]
    NASA. New Horizons[EB/OL]. (2022-10-05)[2023-08-05]. https://solarsystem.nasa.gov/missions/new-horizons/in-depth
    [76]
    HUDSON R S, OSTRO S J, SCHEERES D J. High-resolution model of Asteroid 4179 Toutatis[J]. Icarus, 2003, 161(2): 346-355 doi: 10.1016/S0019-1035(02)00042-8
    [77]
    HUANG J C, JI J H, YE P J, et al. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang’e-2[J]. Scientific Reports, 2013, 3(1): 3411 doi: 10.1038/srep03411
    [78]
    ZHU M H, FA W Z, IP W H, et al. Morphology of asteroid (4179) Toutatis as imaged by Chang’E-2 spacecraft[J]. Geophysical Research Letters, 2014, 41(2): 328-333 doi: 10.1002/2013GL058914
    [79]
    刘磊, 刘勇, 曹建峰, 等. “嫦娥二号”探测小行星任务转移轨道设计[J]. 宇航学报, 2014, 35(3): 262-268

    LIU Lei, LIU Yong, CAO Jianfeng, et al. Mission design of the CHANG’E-2 asteroid exploration[J]. Journal of Astronautics, 2014, 35(3): 262-268
    [80]
    HU S C, JI J H, RICHARDSON D C, et al. The formation mechanism of 4179 Toutatis’ elongated bilobed structure in a close Earth encounter scenario[J]. Monthly Notices of the Royal Astronomical Society, 2018, 478(1): 501-515 doi: 10.1093/mnras/sty1073
    [81]
    JIANG Y, JI J H, HUANG J C, et al. Boulders on asteroid Toutatis as observed by Chang’e-2[J]. Scientific Reports, 2015, 5(1): 16029 doi: 10.1038/srep16029
    [82]
    NASA. Discovery Program[EB/OL]. (2023-01-21)[2023-08-12]. https://www.nasa.gov/planetarymissions/discovery.html#Past
    [83]
    NASA. NEAR Shoemaker[EB/OL]. (2022-10-28)[2023-08-12]. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-008A
    [84]
    CHENG A F. Near Earth Asteroid Rendezvous: Mission Summary [M]. Tucson: The University of Arizona Press, 2002
    [85]
    VEVERKA J, THOMAS P, HARCH A, et al. NEAR encounter with asteroid 253 mathilde: overview[J]. Icarus, 1999, 140(1): 3-16 doi: 10.1006/icar.1999.6120
    [86]
    RIVKIN A S, CLARK B E, BRITT D T, et al. Infrared spectrophotometry of the NEAR flyby target 253 Mathilde[J]. Icarus, 1997, 127(1): 255-257 doi: 10.1006/icar.1997.5695
    [87]
    ANDERSON B J, ACUÑA M H. Search for solar wind–asteroid interactions at Eros[J]. Advances in Space Research, 2004, 33(11): 1989-1995 doi: 10.1016/j.asr.2003.03.032
    [88]
    LARSON H P, FINK U, TREFFERS R R, et al. The infrared spectrum of asteroid 433 Eros[J]. Icarus, 1976, 28(1): 95-103 doi: 10.1016/0019-1035(76)90091-9
    [89]
    YEOMANS D K, ANTREASIAN P G, BARRIOT J P, et al. Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros[J]. Science, 2000, 289(5487): 2085-2088 doi: 10.1126/science.289.5487.2085
    [90]
    VEVERKA J, ROBINSON M, THOMAS P, et al. NEAR at Eros: imaging and spectral results[J]. Science, 2000, 289(5487): 2088-2097 doi: 10.1126/science.289.5487.2088
    [91]
    VEVERKA J, THOMAS P C, ROBINSON M, et al. Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith[J]. Science, 2001, 292(5516): 484-488 doi: 10.1126/science.1058651
    [92]
    COLWELL J E, GULBIS A A S, HORÁNYI M, et al. Dust transport in photoelectron layers and the formation of dust ponds on Eros[J]. Icarus, 2005, 175(1): 159-169 doi: 10.1016/j.icarus.2004.11.001
    [93]
    NASA. Hayabusa[EB/OL]. (2018-01-25)[2023-08-13]. https://solarsystem.nasa.gov/missions/hayabusa/in-depth
    [94]
    NASA. Hayabusa Scientific Instruments[EB/OL]. (2007)[2023-08-13]. https://darts.isas.jaxa.jp/planet/project/hayabusa/instruments.html
    [95]
    FUJIWARA A, KAWAGUCHI J, YEOMANS D K, et al. The Rubble-Pile asteroid Itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778): 1330-1334 doi: 10.1126/science.1125841
    [96]
    ABE S, MUKAI T, HIRATA N, et al. Mass and local topography measurements of Itokawa by Hayabusa[J]. Science, 2006, 312(5778): 1344-1347 doi: 10.1126/science.1126272
    [97]
    DEMURA H, KOBAYASHI S, NEMOTO E, et al. Pole and global shape of 25143 Itokawa[J]. Science, 2006, 312(5778): 1347-1349 doi: 10.1126/science.1126574
    [98]
    KITAZATO K, ABE M, ISHIGURO M, et al. 25143 Itokawa: direct detection of the current decelerating spin state due to YORP effect[J]. Astronomy & Astrophysics, 2007, 472(1): L5-L8
    [99]
    NAKAMURA T, NOGUCHI T, TANAKA M, et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites[J]. Science, 2011, 333(6046): 1113-1116 doi: 10.1126/science.1207758
    [100]
    NAKAMURA T, NAKATO A, ISHIDA H, et al. Mineral chemistry of MUSES-C Regio inferred from analysis of dust particles collected from the first- and second-touchdown sites on asteroid Itokawa[J]. Meteoritics & Planetary Science, 2014, 49(2): 215-227
    [101]
    EBIHARA M, SHIRAI N, SEKIMOTO S, et al. Chemical and mineralogical compositions of two grains recovered from asteroid Itokawa[J]. Meteoritics & Planetary Science, 2015, 50(2): 243-254
    [102]
    YURIMOTO H, ABE K I, ABE M, et al. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission[J]. Science, 2011, 333(6046): 1116-1119 doi: 10.1126/science.1207776
    [103]
    TSUCHIYAMA A, UESUGI M, UESUGI K, et al. Three dimensional structures of particles recovered from the asteroid Itokawa by the Hayabusa mission and a role of X-ray microtomography in the preliminary examination [C]//Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodsland: LPI, 2011
    [104]
    TSUCHIYAMA A, UESUGI M, UESUGI K, et al. Three-dimensional microstructure of samples recovered from asteroid 25143 Itokawa: comparison with LL5 and LL6 chondrite particles[J]. Meteoritics & Planetary Science, 2014, 49(2): 172-187
    [105]
    KITAJIMA F, KOTSUGI M, OHKOCHI T, et al. A micro-spectroscopic approach to the carbonaceous matter in the particles recovered by the Hayabusa mission [C]//Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodsland: LPI, 2011
    [106]
    NARAOKA H, MITA H, HAMASE K, et al. Preliminary organic compound analysis of microparticles returned from Asteroid 25143 Itokawa by the Hayabusa mission[J]. Geochemical Journal, 2012, 46(1): 61-72 doi: 10.2343/geochemj.1.0134
    [107]
    NARAOKA H, AOKI D, FUKUSHIMA K, et al. ToF-SIMS analysis of carbonaceous particles in the sample catcher of the Hayabusa spacecraft[J]. Earth, Planets and Space, 2015, 67(1): 1-9 doi: 10.1186/s40623-014-0143-5
    [108]
    NOGUCHI T, NAKAMURA T, KIMURA M, et al. Incipient space weathering observed on the surface of Itokawa dust particles[J]. Science, 2011, 333(6046): 1121-1125 doi: 10.1126/science.1207794
    [109]
    NOGUCHI T, KIMURA M, HASHIMOTO T, et al. Space weathered rims found on the surfaces of the Itokawa dust particles[J]. Meteoritics & Planetary Science, 2014, 49(2): 188-214
    [110]
    NAGAO K, OKAZAKI R, NAKAMURA T, et al. Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples[J]. Science, 2011, 333(6046): 1128-1131 doi: 10.1126/science.1207785
    [111]
    WAKITA S, NAKAMURA T, IKEDA T, et al. Thermal modeling for a parent body of Itokawa[J]. Meteoritics & Planetary Science, 2014, 49(2): 228-236
    [112]
    NASA. Dawn Science Payload[EB/OL]. [2023-08-14]. https://solarsystem.nasa.gov/missions/dawn/technology/science-payload
    [113]
    NASA. Dawn Objectives[EB/OL]. (2018-12-12)[2023-08-14]. https://solarsystem.nasa.gov/missions/dawn/mission/objectives
    [114]
    RUSSELL C T, RAYMOND C A, CORADINI A, et al. Dawn at Vesta: testing the protoplanetary paradigm[J]. Science, 2012, 336(6082): 684-686 doi: 10.1126/science.1219381
    [115]
    JAUMANN R, WILLIAMS D A, BUCZKOWSKI D L, et al. Vesta’s shape and morphology[J]. Science, 2012, 336(6082): 687-690 doi: 10.1126/science.1219122
    [116]
    MARCHI S, MCSWEEN H Y, O’BRIEN D P, et al. The violent collisional history of asteroid 4 Vesta[J]. Science, 2012, 336(6082): 690-694 doi: 10.1126/science.1218757
    [117]
    SCHENK P, O’BRIEN D P, MARCHI S, et al. The geologically recent giant impact basins at Vesta’s south pole[J]. Science, 2012, 336(6082): 694-697 doi: 10.1126/science.1223272
    [118]
    ZUBER M T, MCSWEEN H Y, BINZEL R P, et al. Origin, internal structure and evolution of 4 Vesta[J]. Space Science Reviews, 2011, 163(1/4): 77-93
    [119]
    DE SANCTIS M C, AMMANNITO E, CAPRIA M T, et al. Spectroscopic characterization of mineralogy and its diversity across Vesta[J]. Science, 2012, 336(6082): 697-700 doi: 10.1126/science.1219270
    [120]
    WATANABE S I, TSUDA Y, YOSHIKAWA M, et al. Hayabusa 2 mission overview[J]. Space Science Reviews, 2017, 208(1/4): 3-16
    [121]
    JAXA. Hayabusa2 Scientific Payloads[EB/OL]. [2023-08-15]. https://www.hayabusa2.jaxa.jp/mission/m_payloard/
    [122]
    WATANABE S, HIRABAYASHI M, HIRATA N, et al. Hayabusa 2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile[J]. Science, 2019, 364(6437): 268-272 doi: 10.1126/science.aav8032
    [123]
    KITAZATO K, MILLIKEN R E, IWATA T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa 2 near-infrared spectroscopy[J]. Science, 2019, 364(6437): 272-275 doi: 10.1126/science.aav7432
    [124]
    HIRABAYASHI M, NAKANO R, TATSUMI E, et al. Spin-driven evolution of asteroids’ top-shapes at fast and slow spins seen from (101955) Bennu and (162173) Ryugu[J]. Icarus, 2020, 352: 113946 doi: 10.1016/j.icarus.2020.113946
    [125]
    SUGITA S, HONDA R, MOROTA T, et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes[J]. Science, 2019, 364(6437): 252
    [126]
    GROTT M, KNOLLENBERG J, HAMM M, et al. Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu[J]. Nature Astronomy, 2019, 3(11): 971-976 doi: 10.1038/s41550-019-0832-x
    [127]
    NOGUCHI T, MATSUMOTO T, MIYAKE A, et al. A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu[J]. Nature Astronomy, 2023, 7(2): 170-181
    [128]
    MOROTA T, SUGITA S, CHO Y, et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: implications for surface evolution[J]. Science, 2020, 368(6491): 654-659 doi: 10.1126/science.aaz6306
    [129]
    TSUDA Y, SAIKI T, TERUI F, et al. Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu[J]. Acta Astronautica, 2020, 171: 42-54 doi: 10.1016/j.actaastro.2020.02.035
    [130]
    JAXA. JAXA Hayabusa 2 Project Printed Material[EB/OL]. (2022-07-29)[2023-08-15]. https://www.hayabusa2.jaxa.jp/en/enjoy/material/
    [131]
    YADA T, ABE M, OKADA T, et al. Preliminary analysis of the Hayabusa 2 samples returned from C-type asteroid Ryugu[J]. Nature Astronomy, 2021, 6(2): 214-220 doi: 10.1038/s41550-021-01550-6
    [132]
    ITO M, TOMIOKA N, UESUGI M, et al. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample[J]. Nature Astronomy, 2022, 6(10): 1163-1171 doi: 10.1038/s41550-022-01745-5
    [133]
    YOKOYAMA T, NAGASHIMA K, NAKAI I, et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites[J]. Science, 2023, 379(6634): eabn7850 doi: 10.1126/science.abn7850
    [134]
    OKAZAKI R, MARTY B, BUSEMANN H, et al. Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution[J]. Science, 2022, 379(6634): eabo0431
    [135]
    NAKAMURA E, KOBAYASHI K, TANAKA R, et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective[J]. Proceedings of the Japan Academy, Series B, 2022, 98(6): 227-282 doi: 10.2183/pjab.98.015
    [136]
    NAKAMURA T, MATSUMOTO M, AMANO K, et al. Formation and evolution of carbonaceous asteroid Ryugu: direct evidence from returned samples[J]. Science, 2023, 379(6634): eabn8671 doi: 10.1126/science.abn8671
    [137]
    NARAOKA H, TAKANO Y, DWORKIN J P, et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu[J]. Science, 2023, 379(6634): eabn9033 doi: 10.1126/science.abn9033
    [138]
    YABUTA H, CODY G D, ENGRAND C, et al. Macromolecular organic matter in samples of the asteroid (162173) Ryugu[J]. Science, 2023, 379(6634): eabn9057 doi: 10.1126/science.abn9057
    [139]
    OKAZAKI R, MIURA Y N, TAKANO Y, et al. First asteroid gas sample delivered by the Hayabusa 2 mission: a treasure box from Ryugu[J]. Science Advances, 2022, 8(46): eabo7239 doi: 10.1126/sciadv.abo7239
    [140]
    LACZNIAK D L, THOMPSON M S, CHRISTOFFERSEN R, et al. Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses[J]. Icarus, 2021, 364: 114479 doi: 10.1016/j.icarus.2021.114479
    [141]
    MICHEL P, BENZ W, TANGA P, et al. Collisions and gravitational reaccumulation: forming asteroid families and satellites[J]. Science, 2001, 294(5547): 1696-1700 doi: 10.1126/science.1065189
    [142]
    OSTRO S J, PRAVEC P, BENNER L A M, et al. Radar and optical observations of asteroid 1998 KY26[J]. Science, 1999, 285(5427): 557-559 doi: 10.1126/science.285.5427.557
    [143]
    NASA. OSIRIS-REx Overview[EB/OL]. (2021-08-12)[2023-08-16]. https://science.nasa.gov/mission/osiris-rex/
    [144]
    LAURETTA D S, CONNOLLY JR H C, GROSSMAN J N, et al. OSIRIS-REx sample analysis plan - Revision 3.0[OL]. arXiv preprint arXiv: 2308.11794, 2023
    [145]
    NASA. NASA Announces OSIRIS-REx Bulk Sample Mass[EB/OL]. (2024-02-15)[2024-02-20]. https://blogs.nasa.gov/osiris-rex/
    [146]
    MICHEL P, BALLOUZ R L, BARNOUIN O S, et al. Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu[J]. Nature Communications, 2020, 11(1): 2655 doi: 10.1038/s41467-020-16433-z
    [147]
    BARNOUIN O S, DALY M G, PALMER E E, et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness[J]. Nature Geoscience, 2019, 12(4): 247-252 doi: 10.1038/s41561-019-0330-x
    [148]
    DELLAGIUSTINA D N, EMERY J P, GOLISH D R, et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Nature Astronomy, 2019, 3(4): 341-351 doi: 10.1038/s41550-019-0731-1
    [149]
    CAMBIONI S, DELBO M, POGGIALI G, et al. Fine-regolith production on asteroids controlled by rock porosity[J]. Nature, 2021, 598(7879): 49-52 doi: 10.1038/s41586-021-03816-5
    [150]
    WALSH K J, JAWIN E R, BALLOUZ R L, et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12(4): 242-246 doi: 10.1038/s41561-019-0326-6
    [151]
    BALLOUZ R L, WALSH K J, BARNOUIN O S, et al. Bennu’s near-Earth lifetime of 1.75 million years inferred from craters on its boulders[J]. Nature, 2020, 587(7833): 205-209 doi: 10.1038/s41586-020-2846-z
    [152]
    HAMILTON V E, SIMON A A, CHRISTENSEN P R, et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu[J]. Nature Astronomy, 2019, 3(4): 332-340 doi: 10.1038/s41550-019-0722-2
    [153]
    SIMON A A, KAPLAN H H, CLOUTIS E, et al. Weak spectral features on (101995) Bennu from the OSIRIS-REx Visible and Infrared Spectrometer[J]. Astronomy & Astrophysics, 2020, 644: A148
    [154]
    KIM Y, DEMARTINI J V, RICHARDSON D C, et al. Tidal resurfacing model for (99942) Apophis during the 2029 close approach with Earth[J]. Monthly Notices of the Royal Astronomical Society, 2023, 520(3): 3405-3415 doi: 10.1093/mnras/stad351
    [155]
    DELLAGIUSTINA D N, NOLAN M C, POLIT A T, et al. OSIRIS-APEX: an OSIRIS-REx extended mission to asteroid apophis[J]. The Planetary Science Journal, 2023, 4(10): 198 doi: 10.3847/PSJ/acf75e
    [156]
    NOLAN M C, GOLISH D R, GUZEWICH S, et al. OSIRIS-APEX: an OSIRIS-REx extended mission to Apophis [C]//Proceedings of the Asteroids, Comets, Meteors Conference 2023. Arizona: Lunar and Planetary Institute, 2023
    [157]
    NASA. Apophis-Solar System Exploration[EB/OL]. (2022-09-27)[2023-08-19]. https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/apophis/in-depth
    [158]
    MCFADDEN K D, MAINZER A K, MASIERO J R, et al. Size and albedo constraints for (152830) dinkinesh using WISE data[J]. The Astrophysical Journal Letters, 2023, 957(1): L2 doi: 10.3847/2041-8213/acff61
    [159]
    MOTTOLA S, HELLMICH S, BUIE M W, et al. Shape models of Lucy targets (3548) Eurybates and (21900) Orus from disk-integrated photometry[J]. The Planetary Science Journal, 2023, 4(1): 18 doi: 10.3847/PSJ/acaf79
    [160]
    BUIE M W, OLKIN C B, MERLINE W J, et al. Size and shape from stellar occultation observations of the double Jupiter Trojan Patroclus and Menoetius[J]. The Astronomical Journal, 2015, 149(3): 113 doi: 10.1088/0004-6256/149/3/113
    [161]
    NASA. Lucy Media Resources[EB/OL]. (2021-10-08)[2023-08-17]. http://www.nasa.govmission_pages/lucy/news/index
    [162]
    CHENG A F, RIVKIN A S, MICHEL P, et al. AIDA DART asteroid deflection test: planetary defense and science objectives[J]. Planetary and Space Science, 2018, 157: 104-115 doi: 10.1016/j.pss.2018.02.015
    [163]
    DALY R T, ERNST C M, BARNOUIN O S, et al. Successful kinetic impact into an asteroid for planetary defence[J]. Nature, 2023, 616(7957): 443-447 doi: 10.1038/s41586-023-05810-5
    [164]
    NASA. DART Press Kit[EB/OL]. (2021-11-02)[2023-08-16]. https://dart.jhuapl.edu/Press-Kit/index.php
    [165]
    CHENG A F, AGRUSA H F, BARBEE B W, et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos[J]. Nature, 2023, 616(7957): 457-460 doi: 10.1038/s41586-023-05878-z
    [166]
    RIVKIN A S, CHENG A F. Planetary defense with the Double Asteroid Redirection Test (DART) mission and prospects[J]. Nature Communications, 2023, 14(1): 1003 doi: 10.1038/s41467-022-35561-2
    [167]
    THOMAS C A, NAIDU S P, SCHEIRICH P, et al. Orbital Period change of Dimorphos due to the DART kinetic impact[J]. Nature, 2023, 616(7957): 448-451 doi: 10.1038/s41586-023-05805-2
    [168]
    NASA. Psyche Mission[EB/OL]. (2021-10-02)[2023-08-17]. https://psyche.asu.edu/scienc/
    [169]
    MICHEL P, KÜPPERS M, BAGATIN A C, et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos[J]. The Planetary Science Journal, 2022, 3(7): 160 doi: 10.3847/PSJ/ac6f52
    [170]
    JAXA. ドイツ航空宇宙センター (DLR) との共同記者会見| ファン!ファン!JAXA![EB/OL]. (2017-09-20)[2023-08-17]. https://fanfun.jaxa.jp/jaxatv/detail/10700.html

    JAXA. Joint press conference with the German Aerospace Center (DLR)[EB/OL]. (2017-09-20)[2023-08-17]. https://fanfun.jaxa.jp/jaxatv/detail/10700.html
    [171]
    HU S C, LI B, JIANG H X, et al. Peculiar orbital characteristics of earth quasi-satellite 469219 Kamo`oalewa: implications for the Yarkovsky detection and orbital uncertainty propagation[J]. The Astronomical Journal, 2023, 166(4): 178 doi: 10.3847/1538-3881/acf8cc
    [172]
    SHARKEY B N L, REDDY V, MALHOTRA R, et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamo`oalewa[J]. Communications Earth & Environment, 2021, 2(1): 231
    [173]
    YADA T, FUJIMURA A, ABE M, et al. Hayabusa-returned sample curation in the planetary material sample curation facility of JAXA[J]. Meteoritics & Planetary Science, 2014, 49(2): 135-153
    [174]
    张夏冬, 谷渊涛, 赵良. 国际地外样品储存与管理状态的对比和启示[J]. 南京大学学报(自然科学), 2021, 57(6): 971-980

    ZHANG Xiadong, GU Yuantao, ZHAO Liang. Comparison of storage and management for international extraterrestrial samples and their implications[J]. Journal of Nanjing University (Natural Science), 2021, 57(6): 971-980
    [175]
    YOSHIKAWA M, KAWAGUCHI J, FUJIWARA A, et al. The Hayabusa mission [M]//LONGOBARDO A. Sample Return Missions. Amsterdam: Elsevier, 2021: 123-146
    [176]
    RIGHTER K, LUNNING N G, NAKAMURA‐MESSENGER K, et al. Curation planning and facilities for asteroid Bennu samples returned by the OSIRIS‐REx mission[J]. Meteoritics & Planetary Science, 2023, 58(4): 572-590
    [177]
    TSUCHIYAMA A, MATSUMOTO T, NAGANO T, et al. Microstructures of voids in itokawa particles collected by hayabusa [C]//75th Annual Meeting of the Meteoritical Society. Cairns: Lunar and Planetary Institute, 2012
    [178]
    EBIHARA M, SEKIMOTO S, SHIRAI N, et al. Neutron activation analysis of a particle returned from asteroid Itokawa[J]. Science, 2011, 333(6046): 1119-1121 doi: 10.1126/science.1207865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(5)

    Article Metrics

    Article Views(2871) PDF Downloads(408) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return