Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
DANG Wei, LUO Junwei, ZHENG Zuohuan, AO Liang, LI Bo, LI Peng, XIONG Shengyang, XU Pengcheng, SONG Hengxu, HU Jianqiao, FENG Yewei. Dependability Technology System for Autonomous Operation of Deep Space Exploration (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 228-240 doi: 10.11728/cjss2024.02.2023-0138
Citation: DANG Wei, LUO Junwei, ZHENG Zuohuan, AO Liang, LI Bo, LI Peng, XIONG Shengyang, XU Pengcheng, SONG Hengxu, HU Jianqiao, FENG Yewei. Dependability Technology System for Autonomous Operation of Deep Space Exploration (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 228-240 doi: 10.11728/cjss2024.02.2023-0138

Dependability Technology System for Autonomous Operation of Deep Space Exploration

doi: 10.11728/cjss2024.02.2023-0138 cstr: 32142.14.cjss2024.02.2023-0138
  • Received Date: 2023-11-28
  • Accepted Date: 2024-03-27
  • Rev Recd Date: 2024-03-21
  • Available Online: 2024-03-27
  • The “unrecognized and uncertain” is the basic feature of deep space exploration missions. A technology system of dependability for autonomous operation in deep space exploration was proposed based on the principle of “scientific value maximization”-oriented exploration and reliability as the core technology. The concept of reliability in the scenario of deep space exploration was analyzed and involved. A dependability systematic framework for autonomous operation of deep space exploration and its overall technical architecture of “demand-cognition-engineering” were proposed, which include precise sensing, optimal calculation, accurate decision-making and “quickly, precisely, exactly” execution. The reliability-oriented multi-physics deeply coupled white-box modeling and its high-fidelity technology, the complex network fault propagation mechanism and its high-confidence technology, the high-reliability assurance route for the application of COTS components in deep space exploration, the fusion mechanism of “model + data + knowledge” and its dynamic evolution technology for multi-agent health state management based on multiple fetal sensing phenomena were studied. The key technology of this technical system and the application verification of its minimum system in the satellite constellation were introduced, and the results show that the technology system proposed has high engineering value.

     

  • loading
  • [1]
    吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17

    WU Weiren, YU Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17
    [2]
    刘继忠, 胡朝斌, 庞涪川, 等. 深空探测发展战略研究[J]. 中国科学: 技术科学, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207

    LIU Jizhong, HU Chaobin, PANG Fuchuan, et al. Strategy of deep space exploration[J]. Scientia Sinica Technologica, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207
    [3]
    陈泽煜, 贺永宁, 宋宁, 等. 美国阿尔忒弥斯载人登月计划进展[J]. 空间电子技术, 2022, 19(6): 75-84 doi: 10.3969/j.issn.1674-7135.2022.06.011

    CHEN Zeyu, HE Yongning, SONG Ning, et al. Progress of the U. S. Artemis lunar program[J]. Space Electronic Technology, 2022, 19(6): 75-84 doi: 10.3969/j.issn.1674-7135.2022.06.011
    [4]
    王大轶, 孟林智, 叶培建, 等. 深空探测器的自主运行技术研究[J]. 航天器工程, 2018, 27(6): 1-10 doi: 10.3969/j.issn.1673-8748.2018.06.001

    WANG Dayi, MENG Linzhi, YE Peijian, et al. Research of autonomous operation technology for deep space probe[J]. Spacecraft Engineering, 2018, 27(6): 1-10 doi: 10.3969/j.issn.1673-8748.2018.06.001
    [5]
    吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学, 2019, 49(1): 1-16 doi: 10.1360/N112018-00273

    WU Weiren, YU Dengyun, HUANG Jiangchuan, et al. Exploring the solar system boundary[J]. Scientia Sinica Informationis, 2019, 49(1): 1-16 doi: 10.1360/N112018-00273
    [6]
    于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022, 1(1): 17-27 doi: 10.3981/j.issn.2097-0781.2022.01.002

    YU Dengyun, MA Jinan. Progress and prospect of deep space exploration in China[J]. Science and Technology Foresight, 2022, 1(1): 17-27 doi: 10.3981/j.issn.2097-0781.2022.01.002
    [7]
    Artemis Plan: NASA’s Lunar Exploration Program Overview[Z]. Washington: National Aeronautics and Space Administration, 2020
    [8]
    于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(2): 108-113

    YU Dengyun, SUN Zezhou, MENG Linzhi, et al. The development process and prospects for mars exploration[J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113
    [9]
    崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28

    CUI Pingyuan, XU Rui, ZHU Shengying, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28
    [10]
    叶培建, 孟林智, 马继楠, 等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383

    YE Peijian, MENG Linzhi, MA Jinan, et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383
    [11]
    徐瑞, 李朝玉, 朱圣英, 等. 深空探测器自主规划技术研究进展[J]. 深空探测学报(中英文), 2021, 8(2): 111-123

    XU Rui, LI Zhaoyu, ZHU Shengying, et al. Research progress of autonomous planning technology for deep space probes[J]. Journal of Deep Space Exploration, 2021, 8(2): 111-123
    [12]
    王明远, 王美, 平劲松, 等. 月球空间环境研究进展[J]. 深空探测学报(中英文), 2021, 8(5): 486-494

    WANG Mingyuan, WANG Mei, PING Jinsong, et al. A review of lunar space environment study[J]. Journal of Deep Space Exploration, 2021, 8(5): 486-494
    [13]
    吴伟仁, 王赤, 刘洋, 等. 深空探测之前沿科学问题探析[J]. 科学通报, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667

    WU Weiren, WANG Chi, LIU Yang, et al. Frontier scientific questions in deep space exploration[J]. Chinese Science Bulletin, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667
    [14]
    于国斌. 深空探测任务协同的系统工程方法应用及趋势[J]. 深空探测学报(中英文), 2021, 8(4): 407-415

    YU Guobin. Application and trend of model-based systems engineering methods for deep space exploration mission[J]. Journal of Deep Space Exploration, 2021, 8(4): 407-415
    [15]
    中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 25000.10-2016 系统与软件工程 系统与软件质量要求和评价(SQuaRE) 第10部分: 系统与软件质量模型[S]. 北京: 中国标准出版社, 2016

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 25000.10-2016 Systems and software engineering—systems and software quality requirements and evaluation (SQuaRE)—Part 10: system and software quality models[S]. Beijing: Standards Press of China, 2016
    [16]
    IEC. IEC 60050-192: 2015 International Electrotechnical Vocabulary (IEV) - Part 192: Dependability[S]. Switzerland: International Electrotechnical Commission Publishing Office, IEC, 2015
    [17]
    NASA. NASA-HDBK-8709.22, Safety and Mission Assurance ACRONYMS, Abbreviations, and Definitions[S]. Washington DC: National Aeronautics and Space Administration, 2018
    [18]
    JONES H W. Improving reliability and maintainability (R&M) in space life support[C]//Proceedings of the 48th International Conference on Environmental Systems. Albuquerque: Albuquerque: International Conference on Environmental Systems, Inc., 2018: 1-15
    [19]
    杨为民. 可靠性·维修性·保障性总论[M]. 北京: 国防工业出版社, 1995

    YANG Weimin. Reliability, Maintainability, and Supportability[M]. Beijing: National Defense Industry Press, 1995
    [20]
    中国人民解放军总装备部. GJB 1405A-2006 装备质量管理术语[S]. 2006

    The General Equipment Department of the People’s Liberation Army of China. GJB 1405A-2006 Terms for equipments quality management[S]. 2006
    [21]
    高强, 潘恩荣. 中西方工程哲学自立自强之路比较研究——以“工程”概念研究为例[J]. 工程研究——跨学科视野中的工程, 2022, 14(4): 266-275 doi: 10.3724/j.issn.1674-4969.22061201

    GAO Qiang, PAN Enrong. A comparative analysis of the self-reliant and self-strengthening path of Chinese and western philosophy of engineering: take concept research of engineering as an example[J]. Journal of Engineering Stu dies, 2022, 14(4): 266-275 doi: 10.3724/j.issn.1674-4969.22061201
    [22]
    康锐, 王自力. 可靠性系统工程理论研究回顾与展望[J]. 航空学报, 2022, 43(10): 527505

    KANG Rui, WANG Zili. Reliability systems engineering: a research review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527505
    [23]
    王大轶, 屠园园, 张香燕, 等. 空间飞行器自主诊断重构的理论和方法[J]. 宇航学报, 2023, 44(4): 546-557

    WANG Dayi, TU Yuanyuan, ZHANG Xiangyan, et al. Theory and method of autonomous fault diagnosis and system reconfiguration for spacecraft[J]. Journal of Astronau tics, 2023, 44(4): 546-557
    [24]
    NASA Headquarters. NASA Methodology for Physics of Failure-Based Reliability Assessments Handbook[R]. Washington: National Aeronautics and Space Administration, 2023
    [25]
    于志亮, 周乃新, 陈兴林, 等. 星间激光通信系统粗精复合扫描技术[J]. 国防科技大学学报, 2016, 38(5): 158-162 doi: 10.11887/j.cn.201605025

    YU Zhiliang, ZHOU Naixin, CHEN Xinglin, et al. Research on coarse-fine composite technology for scanning in inter-satellite laser communication[J]. Journal of National University of Defense Technology, 2016, 38(5): 158-162 doi: 10.11887/j.cn.201605025
    [26]
    尉强, 刘忠. 一种粗-精结合的航天侦察航迹关联算法[J]. 雷达科学与技术, 2017, 15(1): 29-34

    WEI Qiang, LIU Zhong. A track correlation algorithm of space-based reconnaissance based on rough and precise correlations[J]. Radar Science and Technology, 2017, 15(1): 29-34
    [27]
    章辉. 面向空间光学载荷的粗精并联式指向及稳定一体化技术研究[D]. 长春: 中国科学院大学, 2023

    ZHANG Hui. Research on Pointing and Stabilization Technology of Optical Space Payload for Parallel Integration of Coarse and Fine Actuators[D]. Changchun: University of Chinese Academy of Sciences, 2023
    [28]
    曾婵, 李卫民, 毕波. 高动态GPS信号粗捕和精捕算法仿真实现[J]. 北京航空航天大学学报, 2017, 43(4): 790-799

    ZENG Chan, LI Weimin, BI Bo. Simulation realization of high dynamic GPS signal coarse acquisition and fine acquisition algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 790-799
    [29]
    罗磊, 唐利斌, 左文彬. 紫外增强图像传感器的研究进展[J]. 红外技术, 2021, 43(11): 1023-1033

    LUO Lei, TANG Libin, ZUO Wenbin. Research progress in ultraviolet enhanced image sensors[J]. Infrared Technology, 2021, 43(11): 1023-1033
    [30]
    刘桐君, 叶慧琪, 唐靓, 等. 天文光谱高精度波长定标技术研究进展[J]. 光子学报, 2023, 52(5): 0552203 doi: 10.3788/gzxb20235205.0552203

    LIU Tongjun, YE Huiqi, TANG Liang, et al. Research advance in astronomical high-precision wavelength calibration technology[J]. Acta Photonica Sinica, 2023, 52(5): 0552203 doi: 10.3788/gzxb20235205.0552203
    [31]
    马传震, 刘赫男, 陈明君, 等. 半球谐振子关键性能及制造工艺研究新进展[J]. 机械工程学报, 2023, 59: 1-19

    MA Chuanzhen, LIU Henan, CHEN Mingjun, et al. Research progress on key property and manufacturing technology of hemispherical resonator[J]. Journal of Mechanical Engineering, 2023, 59: 1-19
    [32]
    FIGUEROA F, UNDERWOOD L, WALKER M G, et al. NASA Platform for Autonomous Systems (NPAS)[C]. AIAA SciTech 2019. San Diego: AIAA, 2019: 1262-1276
    [33]
    FIGUEROA F, UNDERWOOD L, MORRIS J, et al. Risk-reduction autonomy implementation to enable NASA Artemis missions[C]//Proceedings of 2022 IEEE Aerospace Conference. Big Sky: IEEE, 2022: 1-13
    [34]
    HODSON R F, CHEN Y, PANDOLF J E, et al. Recommendations on Use of Commercial-Off-the-Shelf (COTS) Electrical, Electronic, and Electromechanical (EEE) Parts for NASA Missions[R]. Hampton: National Aeronautics and Space Administration, Langley Research Center, 2020
    [35]
    CAMPOLA M J. Radiation hardness assurance (RHA): challenges and new considerations[C]//Proceedings of Microelectronics Reliability and Qualification Working Meeting. El Segundo: NASA, 2017
    [36]
    PELLISH J. Commercial Off-the-Shelf (COTS) Electronics Reliability for Space Applications[R]. Maryland: National Aeronautics and Space Administration, Goddard Space Flight Center, 2018
    [37]
    WEN Z, WEI D, LIANG A, et al. A theoretical framework of COTS components space application based on “risk information entropy”[C]//Proceedings of the 2022 4th International Conference on System Reliability and Safety Engineering. Guangzhou: IEEE, 2022: 353-357.
    [38]
    XIA W F, WANG Y H, HAO Y C. Modeling failure propagation to analyze the vulnerability of the complex electromechanical systems under network attacks[J]. Phy sica A: Statistical Mechanics and its Applications, 2023, 613: 128514 doi: 10.1016/j.physa.2023.128514
    [39]
    王勉宇. 基于图论的过程故障诊断研究[D]. 杭州: 浙江大学, 2002

    WANG Mianyu. Process Fault Diagnosis Based on Graph Theory[D]. Hangzhou: Zhejiang University, 2002
    [40]
    刘涛, 陈忠, 陈晓荣. 复杂网络理论及其应用研究概述[J]. 系统工程, 2005, 23(6): 1-7 doi: 10.3969/j.issn.1001-4098.2005.06.001

    LIU Tao, CHEN Zhong, CHEN Xiaorong. A brief review of complex networks and its application[J]. Systems Engineering, 2005, 23(6): 1-7 doi: 10.3969/j.issn.1001-4098.2005.06.001
    [41]
    ARNOLD V I. Geometrical Methods in the Theory of Ordinary Differential Equations[M]. New York: Springer, 1983
    [42]
    中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 19001-2016 质量管理体系要求[S]. 北京: 中国标准出版社, 2016

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 19001-2016 Quality management systems—requirements[S]. Beijing: Standards Press of China, 2016
    [43]
    杨为民, 盛一兴. 系统可靠性数字仿真[M]. 北京: 北京航空航天大学出版社, 1990

    YANG Weimin, SHENG Yixing. Digital Simulation of System Reliability[M]. Beijing: Beihang University Press, 1990
    [44]
    WANG Z L. Current status and prospects of reliability systems engineering in China[J]. Frontiers of Engineering Management, 2021, 8(4): 492-502. doi: 10.1007/s42524-021-0172-2
    [45]
    LINDSEY N J, ALIMARDANI M, GALLO L D. Reliability analysis of complex NASA systems with model-based engineering[C]//Proceedings of 2020 Annual Reliability and Maintainability Symposium. Palm Springs: IEEE, 2020: 1-8
    [46]
    尚玉叶, 袁家斌. 深空环境中基于云边端协同的任务卸载方法[J]. 计算机科学, 2023, 50(2): 80-88 doi: 10.11896/jsjkx.220800156

    SHANG Yuye, YUAN Jiabin. Task offloading method based on cloud-edge-end cooperation in deep space environment[J]. Computer Science, 2023, 50(2): 80-88 doi: 10.11896/jsjkx.220800156
    [47]
    中国载人航天工程办公室. 空间站应用与发展工程空间科学与应用项目指南(V1.0)[R]. 北京: 中国载人航天工程办公室, 2023. https://www.cmse.gov.cn/gfgg/202306/W020230629432887860164.pdf

    China Manned Space Engineering Office. Space Science and Applications Project Guide for Space Station Applications and Development Engineering (V1.0)[M]. Beijing: China Manned Space Engineering Office, 2023. https://www.cmse.gov.cn/gfgg/202306/W020230629432887860164.pdf
    [48]
    XU T. A Multiphysics single event effect modeling method based on machine learning for semiconductor devices[C]//Proceedings of the 7th Sino MOS-AK Workshop. Nanjing: MOS-AK, 2023: 17-19
    [49]
    党炜, 孙惠中, 李瑞莹, 等. COTS器件空间应用的可靠性保证技术研究[J]. 电子学报, 2009, 37(11): 2589-2594 doi: 10.3321/j.issn:0372-2112.2009.11.042

    DANG Wei, SUN Huizhong, LI Ruiying, et al. Research on reliability assurance of COTS components in space application[J]. Acta Electronica Sinica, 2009, 37(11): 2589-2594 doi: 10.3321/j.issn:0372-2112.2009.11.042
    [50]
    党炜. COTS应用于空间辐射环境的可靠性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2007

    DANG Wei. Reliability Study on COTS Used in Space Radiation Environment[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2007
    [51]
    邹田骥, 李鹏, 李丹, 等. COTS器件空间应用可靠性保证体系实践[J]. 中国质量, 2018(8): 83-88

    ZOU Tianji, LI Peng, LI Dan, et al. Practice of COTS device reliability assurance system for space application[J]. China Quality, 2018(8): 83-88
    [52]
    党炜, 李鹏, 敖亮, 等. 一种基于多胞胎身心感应的航天器智能自主健康管理系统: 中国, 116578905A[P]. 2023-08-11

    DANG Wei, LI Peng, AO Liang, et al. A spacecraft intelligent autonomous health management system based on multiple births mind-body sensing: CN, 116578905A[P]. 2023-08-11
    [53]
    李霜琳, 蒲京辉, 郭鹏斌, 等. DRO卫星编队同波束差分相对导航[J]. 深空探测学报(中英文), 2023, 10(2): 211-219

    LI Shuanglin, PU Jinghui, GUO Pengbin, et al. Single-beam differential relative navigation of DRO satellite formation[J]. Journal of Deep Space Exploration, 2023, 10(2): 211-219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article Views(1717) PDF Downloads(161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return