Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Xiaoyong, ZHANG Jiafu, LI Ling, GUO Chongling. Space-based Distributed Optical Synthetic Aperture Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 356-367 doi: 10.11728/cjss2024.02.yg06
Citation: WANG Xiaoyong, ZHANG Jiafu, LI Ling, GUO Chongling. Space-based Distributed Optical Synthetic Aperture Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 356-367 doi: 10.11728/cjss2024.02.yg06

Space-based Distributed Optical Synthetic Aperture Techniques

doi: 10.11728/cjss2024.02.yg06 cstr: 32142.14.cjss2024.02.yg06
  • Received Date: 2024-02-01
  • Rev Recd Date: 2024-03-05
  • Available Online: 2024-04-15
  • The exploration and study of habitable zone planets is one of the hot research fields of exoplanets in recent years. The exploration of habitable planets near the solar system is of great significance to the study of the origin of life and has become the main theme of exoplanet exploration. As an important means of detecting exohabitable planets, space-based distributed synthetic aperture technology has become a hot spot in the research of advanced optical technology. In this paper, the technical principle of space-based distributed optical synthetic aperture system based on Michelson interferometric imaging is discussed in detail, and the development of typical distributed synthetic aperture systems at home and abroad is introduced. The technical challenges involved are demonstrated.

     

  • loading
  • [1]
    田丰, 胡雄, 吴季. 系外行星大气与宜居系外行星研究进展及发展趋势[J]. 空间科学学报, 2016, 36(6): 815-827 doi: 10.11728/cjss2016.06.815

    TIAN Feng, HU Xiong, WU Ji. Research progress and prospect of exoplanetary atmospheres and habitable exoplanet sciences[J]. Chinese Journal of Space Science, 2016, 36(6): 815-827 doi: 10.11728/cjss2016.06.815
    [2]
    王佳琪, 王汇娟, 王炜, 等. 太阳系外行星探测研究进展[J]. 天文学进展, 2021, 39(1): 1-28 doi: 10.3969/j.issn.1000-8349.2021.01.01

    WANG Jiaqi, WANG Huijuan, WANG Wei, et al. The recent progress of detection and research of exoplanets[J]. Progress in Astronomy, 2021, 39(1): 1-28 doi: 10.3969/j.issn.1000-8349.2021.01.01
    [3]
    胡永云. 系外行星和系外生命——兼谈2019年度诺贝尔物理学奖[J]. 科学通报, 2019, 64(36): 3798-3807 doi: 10.1360/TB-2019-0720

    HU Yongyun. Searching for exoplanets and exo-life: On the 2019 nobel prize in physics[J]. Chinese Science Bulletin, 2019, 64(36): 3798-3807 doi: 10.1360/TB-2019-0720
    [4]
    NASA. Exoplanet and Candidate Statistics[EB/OL]. (2023-12-28)[2023-12-28]. https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
    [5]
    BRACEWELL R N. Detecting nonsolar planets by spinning infrared interferometer[J]. Nature, 1978, 274(5673): 780-781 doi: 10.1038/274780a0
    [6]
    MARTIN S R, KSENDZOV A, LAY O, et al. TPF-Interferometer: a decade of development in exoplanet detection technology[C]//Proceedings of SPIE 8151, Techniques and Instrumentation for Detection of Exoplanets V. San Diego: SPIE, 2011: 81510D
    [7]
    GABOR P. A Study of the Performance of A Nulling Interferometer Testbed Preparatory to the Darwin Mission[D]. Paris: Universite Paris Sud, 2009
    [8]
    QUANZ S P, OTTIGER M, FONTANET E, et al. Large Interferometer For Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission[J]. Astronomy & Astrophysics, 2022, 664: A21
    [9]
    NASA Headquarters. Kepler Completes Prime Mission, Begins Extended Mission[EB/OL]. (2012-11-15)[2023-12-28]. https://www.astronomy.com/science/kepler-completes-prime-mission-begins-extended-mission/
    [10]
    KIM S E. What Comes After the James Webb Space Telescope? Some Astronomers Want LIFE[EB/OL]. (2022-06-02)[2023-12-28]. https://www.popsci.com/science/next-james-webb-space-telescope-find-exoplanets/#The%20Origins%20of%20Life
    [11]
    Kammerer J , Quanz S P . Simulating the Exoplanet Yield of a Space-based MIR Interferometer Based on Kepler Statistics[J]. Earth and Planetary Astrophysics , 2017, 609: A4
    [12]
    乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J]. 中国光学与应用光学, 2009, 2(3): 175-183

    QIAO Yanfeng, LIU Kun, DUAN Xiangyong. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175-183
    [13]
    周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学, 2017, 10(1): 25-38 doi: 10.3788/co.20171001.0025

    ZHOU Chenghao, WANG Zhile, ZHU Feng. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017, 10(1): 25-38 doi: 10.3788/co.20171001.0025
    [14]
    GLINDEMANN A, ABUTER R, CARBOGNANI F, et al. The VLT Interferometer: a unique instrument for high-resolution astronomy[C]//Proceedings of SPIE 4006, Interferometry in Optical Astronomy. Munich: SPIE, 2000
    [15]
    GLINDEMANN A, ALGOMEDO J, AMESTICA R, et al. The VLTI and its subsystems[J]. EAS Publications Series, 2003, 6: 91-91 doi: 10.1051/eas:2003008
    [16]
    GLINDEMANN A. Introduction to Spatial Interferometry[EB/OL]. (2022)[2022]. https://www.eso.org/sci/facilities/paranal/telescopes/vlti/tuto/tutorial_spatial_interferometry.pdf
    [17]
    林燮佳, 吴桢. 光学合成孔径成像技术的uv覆盖与孔径排列研究[J]. 应用光学, 2012, 33(1): 30-36

    LIN Xiejia, WU Zhen. Study on uv coverage of optical synthetic aperture imaging technology and optimization of aperture[J]. Journal of Applied Optics, 2012, 33(1): 30-36
    [18]
    DEFRÈRE D, HINZ P, SKEMER A, et al. Exoplanet science with the LBTI: instrument status and plans[C]//Proceedings of SPIE 9605, Techniques and Instrumentation for Detection of Exoplanets VII. San Diego: SPIE, 2015: 96051G
    [19]
    HILL J M, GREEN R F, SLAGLE J H. The large binocular telescope[C]//Proceedings of SPIE 7733, Ground-based and Airborne Telescopes III. San Diego: SPIE, 2006: 77330C
    [20]
    ERTEL S, HINZ P M, STONE J M, et al. Overview and prospects of the LBTI beyond the completed HOSTS survey[C]//Proceedings of SPIE 11446, Optical and Infrared Interferometry and Imaging VII. Online Only: SPIE, 2020: 1144607
    [21]
    PATRU F, ESPOSITO S, PUGLISI A, et al. The LBTI Fizeau imager – I. Fundamental gain in high-contrast imaging[J]. Monthly Notices of the Royal Astronomical Society, 2017, 472(3): 2544-2553 doi: 10.1093/mnras/stx1961
    [22]
    HINZ P M, DEFRÈRE D, SKEMER A, et al. Overview of LBTI: a multipurpose facility for high spatial resolution observations[C]//Proceedings of SPIE 9907, Optical and Infrared Interferometry and Imaging V. Edinburgh: SPIE, 2016: 990704
    [23]
    COLAVITA M M, WIZINOWICH P L, AKESON R L, et al. The Keck Interferometer[J]. Publications of the Astronomical Society of the Pacific, 2013, 125: 1226-1264 doi: 10.1086/673475
    [24]
    VASISHT G, BOOTH A J, COLAVITA M M, et al. Performance and verification of the Keck interferometer fringe detection and tracking system[C]//Proceedings of SPIE 4838, Interferometry for Optical Astronomy II. Waikoloa: SPIE, 2003
    [25]
    WOILLEZ J, AKESON R, COLAVITA M, et al. ASTRA: astrometry and phase-referencing astronomy on the Keck interferometer[C]//Proceedings of SPIE 7734, Optical and Infrared Interferometry II. San Diego: SPIE, 2010
    [26]
    SCHÖLLER M. The very large telescope interferometer: current facility and prospects[J]. New Astronomy Reviews, 2007, 51(8/9): 628-638
    [27]
    EISENHAUER F, PERRIN G, STRAUBMEIER C, et al. GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI[C]. Proceedings of the International Astronomical Union, 2007, 3 (S248): 100-101
    [28]
    ABUTER R, ACCARDO M, AMORIM A, et al. First light for GRAVITY: Phase referencing optical interferometry for the very large telescope interferometer[J]. Astronomy & Astrophysics, 2017, 602: A94
    [29]
    COCKELL C S, LEGER A, FRIDLUND M, et al. Darwin-a mission to detect and search for life on extrasolar planets[J]. Astrobiology, 2009, 9 (1): 1-22
    [30]
    WALLNER O, ERGENZINGER K, FLATSCHER R, et al. DARWIN mission and configuration trade-of[C]//Proceedings of SPIE 6268, Advances in Stellar Interferometry. Orlando: SPIE, 2006: 626827
    [31]
    FRIDLUND M, GONDOIN P. GENIE – the Darwin demonstrator[J]. Astrophysics and Space Science, 2003, 286(1): 93-98
    [32]
    GONDOIN P, ABSIL O, FRIDLUND C V M, et al. Darwin ground-based European nulling interferometer experiment (GENIE)[C]//Proceedings of SPIE 4838, Interferometry for Optical Astronomy II. Waikoloa: SPIE, 2003: 700-711
    [33]
    HENRY C, LAY O, AUNG M, et al. Terrestrial planet finder interferometer: architecture, mission design, and technology development[C]//Proceedings of SPIE 5491, New Frontiers in Stellar Interferometry. Glasgow: SPIE, 2004: 265-274
    [34]
    LAWSON P R, LAY O P, JOHNSTON K J, et al. Terrestrial Planet Finder Interferometer Science Working Group Report[M]. California: Jet Propulsion Laboratory, 2007
    [35]
    HANSEN J T, IRELAND M J, The LIFE Collaboration. Large Interferometer for Exoplanets (LIFE) IV. Ideal kernel-nulling array architectures for a space-based mid-infrared nulling interferometer[J]. Astronomy & Astrophysics, 2022, 664: A52
    [36]
    RANGANATHAN M, GLAUSER A M, BIRBACHER T, et al. The nulling interferometer cryogenic experiment: I[C]//Proceedings of SPIE 12183, Optical and Infrared Interferometry and Imaging VIII. Montréal: SPIE, 2022: 121830L
    [37]
    仝照远, 李萌, 崔程博, 等. 空间可展开薄膜遮光罩设计与分析[J]. 中国空间科学技术, 2021, 41(3): 82-88

    TONG Zhaoyuan, LI Meng, CUI Chengbo, et al. Design and analysis of the configuration of deployable membrane sunshield[J]. Chinese Space Science and Technology, 2021, 41(3): 82-88
    [38]
    JIANG A M, WANG S, DONG Z C, et al. Wide-band white light sparse-aperture Fizeau imaging interferometer testbed for a distributed small-satellites constellation[J]. Applied Optics, 2018, 57(11): 2736-2746 doi: 10.1364/AO.57.002736
    [39]
    XUE J W, JIANG A M, WANG S, et al. Design and experimental demonstration of pointing correction module for a Fizeau imaging interferometer[J]. Applied Optics, 2018, 57(34): 9936-9943 doi: 10.1364/AO.57.009936
    [40]
    谢宗良. 相控望远镜阵列成像关键技术研究[D]. 成都: 中国科学院光电技术研究所, 2018

    XIE Zongliang. Study on key technology of phased telescope array imaging[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018
    [41]
    XIE Z L, MA H T, QI B, et al. Restoration of sparse aperture images using spatial modulation diversity technology based on a binocular telescope testbed[J]. IEEE Photonics Journal, 2017, 9(3): 7802611
    [42]
    XIE Z L, MA H T, HE X J, et al. Adaptive piston correction of sparse aperture systems with stochastic parallel gradient descent algorithm[J]. Optics Express, 2018, 26(8): 9541-9551 doi: 10.1364/OE.26.009541
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article Views(769) PDF Downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return