| Citation: | GE Jian, CHEN Wen, CHEN Yonghe, SONG Zongxi, WANG Jian, ZHANG Hui, LI Yan, ZANG Weicheng, ZHOU Dan, ZHANG Yongshuai, CHEN Kun, YANG Yingquan, MAO Shude, HUANG Chelsea, YAO Xinyu, LI Xinglong, JIANG Haijiao, YU Yong, TANG Zhenghong, DONG Feng, GAO Wei, ZHANG Hongfei, SHEN Chao, WANG Fengtao, WEI Chuanxin, YANG Baoyu, LI Yudong, WEN Lin, ZHANG Pengjun, ZHANG Congcong, XIE Jiwei, MA Bo, DENG Hongping, LIU Huigen, DUAN Xuliang, WANG Haoyu, HUANG Jiangjiang, GAO Yang, WANG Yifei, WANG Lei, QIN Genjian, LIU Xinyu, GAO Jie. Search for a Second Earth – the Earth 2.0 (ET) Space Mission (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 400-424 doi: 10.11728/cjss2024.03.yg05 |
| [1] |
MAYOR M, QUELOZ D. A Jupiter-mass companion to a solar-type star[J]. Nature, 1995, 378(6555): 355-359 doi: 10.1038/378355a0
|
| [2] |
KASTING J F, WHITMIRE D P, REYNOLDS R T. Habitable zones around main sequence stars[J]. Icarus, 1993, 101(1): 108-128 doi: 10.1006/icar.1993.1010
|
| [3] |
BORUCKI W J, KOCH D, BASRI G, et al. Kepler planet-detection mission: introduction and first results[J]. Science, 2010, 327(5968): 977-980 doi: 10.1126/science.1185402
|
| [4] |
BORUCKI W J. KEPLER Mission: development and overview[J]. Reports on Progress in Physics, 2016, 79(3): 036901 doi: 10.1088/0034-4885/79/3/036901
|
| [5] |
FRESSIN F, TORRES G, CHARBONNEAU D, et al. The false positive rate of Kepler and the occurrence of planets[J]. The Astrophysical Journal, 2013, 766(2): 81 doi: 10.1088/0004-637X/766/2/81
|
| [6] |
HOWARD A W, MARCY G W, BRYSON S T, et al. Planet occurrence within 0.25 au of solar-type stars from Kepler[J]. The Astrophysical Journal Supplement Series, 2012, 201(2): 15 doi: 10.1088/0067-0049/201/2/15
|
| [7] |
MORTON T D, BRYSON S T, COUGHLIN J L, et al. False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives[J]. The Astrophysical Journal, 2016, 822(2): 86 doi: 10.3847/0004-637X/822/2/86
|
| [8] |
THOMPSON S E, COUGHLIN J L, HOFFMAN K, et al. Planetary candidates observed by Kepler. VIII. A fully automated catalog with measured completeness and reliability based on data release 25[J]. The Astrophysical Journal Supplement Series, 2018, 235(2): 38 doi: 10.3847/1538-4365/aab4f9
|
| [9] |
ZHANG H, GE J, DENG H P, et al. Science goals of the Earth 2.0 space mission[C]//Proceedings of SPIE 12180, Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave. Montréal: SPIE, 2022: 1218016
|
| [10] |
ZHU W, PETROVICH C, WU Y Q, et al. About 30% of sun-like stars have Kepler-like planetary systems: a study of their intrinsic architecture[J]. The Astrophysical Journal, 2018, 860(2): 101 doi: 10.3847/1538-4357/aac6d5
|
| [11] |
GILLILAND R L, CHAPLIN W J, DUNHAM E W, et al. KEPLER mission stellar and instrument noise properties[J]. The Astrophysical Journal Supplement Series, 2011, 197 (1): 6
|
| [12] |
RICKER G R, WINN J N, VANDERSPEK R, et al. Transiting exoplanet survey satellite (TESS)[C]//Proceedings of SPIE 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. Montréal: SPIE, 2014: 914320
|
| [13] |
RICKER G R, WINN J N, VANDERSPEK R, et al. Transiting exoplanet survey satellite[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(1): 014003
|
| [14] |
European Space Agency. PLATO Revealing Habitable Worlds Around Solar-Like Stars[R/OL]. https://sci.esa.int/documents/33240/36096/1567260308850-PLATO_Definition_Study_Report_1_2.pdf
|
| [15] |
RAUER H, CATALA C, AERTS C, et al. The PLATO 2.0 mission[J]. Experimental Astronomy, 2014, 38(1/2): 249-330
|
| [16] |
GE J, ZHANG H, DENG H P, et al. The ET mission to search for earth 2.0s[J]. The Innovation, 2022, 3(4): 100271 doi: 10.1016/j.xinn.2022.100271
|
| [17] |
GE J, ZHANG H, ZANG W C, et al. ET white paper: to find the first earth 2.0[OL]. arXiv preprint arXiv: 2206.06693, 2022
|
| [18] |
GE J, ZHANG H, ZHANG Y S, et al. The Earth 2.0 space mission for detecting earth-like planets around solar type stars[C]//Proceedings of SPIE 12180, Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave. Montréal: SPIE, 2022: 13
|
| [19] |
IZIDORO A, OGIHARA M, RAYMOND S N, et al. Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains[J]. Monthly Notices of the Royal Astronomical Society, 2017, 470(2): 1750-1770 doi: 10.1093/mnras/stx1232
|
| [20] |
OGIHARA M, KOKUBO E, SUZUKI T K, et al. Formation of close-in super-Earths in evolving protoplanetary disks due to disk winds[J]. Astronomy & Astrophysics, 2018, 615: A63
|
| [21] |
FULTON B J, PETIGURA E A, HOWARD A W, et al. The california-Kepler survey. III. A gap in the radius distribution of small planets[J]. The Astronomical Journal, 2017, 154(3): 109 doi: 10.3847/1538-3881/aa80eb
|
| [22] |
OWEN J E, WU Y Q. The evaporation valley in the Kepler planets[J]. The Astrophysical Journal, 2017, 847(1): 29 doi: 10.3847/1538-4357/aa890a
|
| [23] |
WU Y Q, LITHWICK Y. Density and eccentricity of Kepler planets[J]. The Astrophysical Journal, 2013, 772(1): 74 doi: 10.1088/0004-637X/772/1/74
|
| [24] |
HSU D C, FORD E B, RAGOZZINE D, et al. Occurrence rates of planets orbiting FGK stars: combining Kepler DR25, Gaia DR2, and Bayesian inference[J]. The Astronomical Journal, 2019, 158(3): 109 doi: 10.3847/1538-3881/ab31ab
|
| [25] |
KUNIMOTO M, MATTHEWS J M. Searching the entirety of Kepler data. II. Occurrence rate estimates for FGK stars[J]. The Astronomical Journal, 2020, 159(6): 248 doi: 10.3847/1538-3881/ab88b0
|
| [26] |
GILLON M, TRIAUD A H M J, DEMORY B O, et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1[J]. Nature, 2017, 542(7642): 456-460 doi: 10.1038/nature21360
|
| [27] |
ZECHMEISTER M, DREIZLER S, RIBAS I, et al. The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden’s Star[J]. Astronomy & Astrophysics, 2019, 627: A49
|
| [28] |
DREIZLER S, JEFFERS S V, RODRÍGUEZ E, et al. RedDots: a temperate 1.5 Earth-mass planet candidate in a compact multiterrestrial planet system around GJ 1061[J]. Monthly Notices of the Royal Astronomical Society, 2020, 493(1): 536-550 doi: 10.1093/mnras/staa248
|
| [29] |
VANDERBURG A, ROWDEN P, BRYSON S, et al. A habitable-zone earth-sized planet rescued from false positive status[J]. The Astrophysical Journal Letters, 2020, 893(1): L27 doi: 10.3847/2041-8213/ab84e5
|
| [30] |
GILBERT E A, BARCLAY T, SCHLIEDER J E, et al. The first habitable-zone earth-sized planet from TESS. I. Validation of the TOI-700 system[J]. The Astronomical Journal, 2020, 160(3): 116 doi: 10.3847/1538-3881/aba4b2
|
| [31] |
QUINTANA E V, BARCLAY T, RAYMOND S N, et al. An earth-sized planet in the habitable zone of a cool star[J]. Science, 2014, 344(6181): 277-280 doi: 10.1126/science.1249403
|
| [32] |
GUERRERO N M, SEAGER S, HUANG C X, et al. The TESS objects of interest catalog from the TESS prime mission[J]. The Astrophysical Journal Supplement Series, 2021, 254(2): 39 doi: 10.3847/1538-4365/abefe1
|
| [33] |
KUNIMOTO M, DAYLAN T, GUERRERO N, et al. The TESS faint-star search: 1617 TOIs from the TESS primary mission[J]. The Astrophysical Journal Supplement Series, 2022, 259(2): 33 doi: 10.3847/1538-4365/ac5688
|
| [34] |
BENZ W, BROEG C, FORTIER A, et al. The CHEOPS mission[J]. Experimental Astronomy, 2021, 51(1): 109-151 doi: 10.1007/s10686-020-09679-4
|
| [35] |
FORGAN D H, HALL C, MERU F, et al. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions[J]. Monthly Notices of the Royal Astronomical Society, 2018, 474(4): 5036-5048 doi: 10.1093/mnras/stx2870
|
| [36] |
RASIO F A, FORD E B. Dynamical instabilities and the formation of extrasolar planetary systems[J]. Science, 1996, 274(5289): 954-956 doi: 10.1126/science.274.5289.954
|
| [37] |
KAIB N A, RAYMOND S N, DUNCAN M. Planetary system disruption by Galactic perturbations to wide binary stars[J]. Nature, 2013, 493(7432): 381-384 doi: 10.1038/nature11780
|
| [38] |
MA S Z, MAO S D, IDA S, et al. Free-floating planets from core accretion theory: microlensing predictions[J]. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461(1): L107-L111 doi: 10.1093/mnrasl/slw110
|
| [39] |
BARCLAY T, QUINTANA E V, RAYMOND S N, et al. The demographics of rocky free-floating planets and their detectability by WFIRST[J]. The Astrophysical Journal, 2017, 841(2): 86 doi: 10.3847/1538-4357/aa705b
|
| [40] |
GOULD A, JUNG Y K, HWANG K H, et al. Free-floating planets, the einstein desert, and ’oumuamua[J]. Journal of the Korean Astronomical Society, 2022, 55(5): 173-194
|
| [41] |
KIM S L, LEE C U, PARK B G, et al. KMTNET: a network of 1.6 m wide-field optical telescopes installed at three southern observatories[J]. Journal of the Korean Astronomical Society, 2016, 49(1): 37-44 doi: 10.5303/JKAS.2016.49.1.37
|
| [42] |
GOULD A, ZANG W C, MAO S D, et al. Masses for free-floating planets and dwarf planets[J]. Research in Astronomy and Astrophysics, 2021, 21(6): 133 doi: 10.1088/1674-4527/21/6/133
|
| [43] |
The Microlensing Observations in Astrophysics (MOA) Collaboration, The Optical Gravitational Lensing Experiment (OGLE) Collaboration. Unbound or distant planetary mass population detected by gravitational microlensing[J]. Nature, 2011, 473(7347): 349-352 doi: 10.1038/nature10092
|
| [44] |
MRóZ P, UDALSKI A, SKOWRON J, et al. No large population of unbound or wide-orbit Jupiter-mass planets[J]. Nature, 2017, 548(7666): 183-186 doi: 10.1038/nature23276
|