Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
JIN Lijun, CHEN Biyan, WANG Xiaoman, WU Dingyi. Global Accuracy Assessment and Analysis of the Ionospheric Model IRI-Plas 2020 and IRI-2020 Based on GNSS Observations (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1031-1046 doi: 10.11728/cjss2024.06.2023-0075
Citation: JIN Lijun, CHEN Biyan, WANG Xiaoman, WU Dingyi. Global Accuracy Assessment and Analysis of the Ionospheric Model IRI-Plas 2020 and IRI-2020 Based on GNSS Observations (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1031-1046 doi: 10.11728/cjss2024.06.2023-0075

Global Accuracy Assessment and Analysis of the Ionospheric Model IRI-Plas 2020 and IRI-2020 Based on GNSS Observations

doi: 10.11728/cjss2024.06.2023-0075 cstr: 32142.14.cjss.2023-0075
  • Received Date: 2023-07-24
  • Rev Recd Date: 2024-01-24
  • Available Online: 2024-11-02
  • The ionosphere plays a crucial role in aerospace, communication and navigation positioning, and empirical ionospheric models such as the IRI (International Reference Ionosphere) model and IRI-Plas (International Reference Ionosphere Extended to Plasmasphere) model are widely used in estimating ionospheric parameters. Due to the uneven distribution and missing stations in certain regions of GNSS (Global Navigation Satellite System) stations, empirical ionospheric models are often employed in ionospheric research to address data scarcity. Evaluating the latest versions of the IRI-Plas model and the IRI model will assist in understanding the ionospheric response and model performance under different environments, enabling better refinement of existing models. Based on the dual-frequency observations of 135 GNSS stations worldwide, the Vertical Total Electron Content (VTEC) and Slant Total Electron Content (STEC) are extracted in this study to evaluate the IRI-Plas 2020 model with GIM TEC input, the IRI-Plas 2020 model without external TEC input, and the IRI-2020 model. The differences between different ionospheric models and GNSS observations are presented and analyzed in detail, including patterns of ionospheric latitude variation, daily variation and seasonal variation and the accuracy of models under different geomagnetic conditions. The results show that all models can represent the ionospheric characteristics very well, among which the IRI-Plas model value with GIM TEC input has the highest accuracy, while the IRI-Plas model value without external TEC input is high due to the limitation of the model calculation altitude range. Also, the errors of all models exhibit latitudinal variations, usually decreasing with the increase of latitude, and these variations also show seasonal trends.

     

  • loading
  • [1]
    袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349

    YUAN Yunbin, HUO Xingliang, ZHANG Baocheng. Research progress of precise models and correction for gnss ionospheric delay in China over recent years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349
    [2]
    聂文锋, 胡伍生, 潘树国, 等. 利用GPS双频数据进行区域电离层TEC提取[J]. 武汉大学学报·信息科学版, 2014, 39(9): 1022-1027

    NIE Wenfeng, HU Wusheng, PAN Shuguo, et al. Extraction of regional ionospheric TEC from GPS dual observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027
    [3]
    BILITZA D, REINISCH B W, RADICELLA S M, et al. Improvements of the International Reference Ionosphere model for the topside electron density profile[J]. Radio Science, 2006, 41(5): RS5S15
    [4]
    BILITZA D, BROWN S A, WANG M Y, et al. Measurements and IRI model predictions during the recent solar minimum[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 86: 99-106 doi: 10.1016/j.jastp.2012.06.010
    [5]
    BILITZA D, ALTADILL D, TRUHLIK V, et al. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429 doi: 10.1002/2016SW001593
    [6]
    BILITZA D, PEZZOPANE M, TRUHLIK V, et al. The international reference ionosphere model: a review and description of an ionospheric benchmark[J]. Reviews of Geophysics, 2022, 60(4): e2022RG000792 doi: 10.1029/2022RG000792
    [7]
    GULYAEVA T L, STANISLWSKA I, TOMASIK M. Ionospheric weather: cloning missed f0F2 observations for derivation of variability index[J]. Annales Geophysicae, 2008, 26(2): 315-321 doi: 10.5194/angeo-26-315-2008
    [8]
    GULYAEVA T L, ARIKAN F, STANISLAWSKA I. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms[J]. Earth, Planets and Space, 2011, 63(8): 929-939 doi: 10.5047/eps.2011.04.007
    [9]
    SHUBIN V N, GULYAEVA T L. Global mapping of total electron content from GNSS observations for updating IRI-Plas model[J]. Advances in Space Research, 2022, 69(1): 168-175 doi: 10.1016/j.asr.2021.09.032
    [10]
    ADEBIYI S J, ADIMULA I A, OLADIPO O A, et al. Assessment of IRI and IRI-Plas models over the African equatorial and low-latitude region[J]. Journal of Geophysical Research: Space Physics, 2016, 121(7): 7287-7300 doi: 10.1002/2016JA022697
    [11]
    CHEN B Y, WU L X, DAI W J, et al. A new parameterized approach for ionospheric tomography[J]. GPS Solutions, 2019, 23(4): 96 doi: 10.1007/s10291-019-0893-4
    [12]
    OGWALA A, SOMOYE E O, PANDA S K, et al. Total electron content at equatorial and low-, middle- and high-latitudes in African longitude sector and its comparison with IRI-2016 and IRI-PLAS 2017 models[J]. Advances in Space Research, 2021, 68(5): 2160-2176 doi: 10.1016/j.asr.2020.07.013
    [13]
    LIU J L, JIA X L, ZHU Y X, et al. Comparing GNSS TEC data from the African continent with IRI-2016, IRI-Plas, and NeQuick predictions[J]. Advances in Space Research, 2022, 69(7): 2852-2864 doi: 10.1016/j.asr.2022.01.008
    [14]
    ATICI R. Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey[J]. Astrophysics and Space Science, 2018, 363(11): 231 doi: 10.1007/s10509-018-3457-0
    [15]
    ARIKAN F, SHUKUROV S, TUNA H, et al. Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance[J]. Geodesy and Geodynamics, 2016, 7(1): 1-10 doi: 10.1016/j.geog.2015.12.009
    [16]
    李博峰, 葛海波, 沈云中. 无电离层组合、Uofc和非组合精密单点定位观测模型比较[J]. 测绘学报, 2015, 44(7): 734-740 doi: 10.11947/j.AGCS.2015.20140161

    LI Bofeng, GE Haibo, SHEN Yunzhong. Comparison of Ionosphere-free, Uofc and uncombined PPP observation models[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 734-740 doi: 10.11947/j.AGCS.2015.20140161
    [17]
    REN X D, ZHANG X H, XIE W L, et al. Global ionospheric modelling using multi-GNSS: BeiDou, Galileo, GLONASS and GPS[J]. Scientific Reports, 2016, 6: 33499 doi: 10.1038/srep33499
    [18]
    张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10): 1399-1407 doi: 10.11947/j.AGCS.2017.20170327

    ZHANG Xiaohong, LI Xingxing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1399-1407 doi: 10.11947/j.AGCS.2017.20170327
    [19]
    周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[D]. 上海: 华东师范大学, 2018

    ZHOU Feng. Theory and Methodology of Multi-GNSS Undifferenced and Uncombined Precise Point Positioning[D]. Shanghai: East China Normal University, 2018
    [20]
    ZHOU F, DONG D N, LI W W, et al. GAMP: an open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations[J]. GPS Solutions, 2018, 22(2): 33 doi: 10.1007/s10291-018-0699-9
    [21]
    朱军桃, 刘玉升, 林知宇, 等. 2018-08-25~29期间全球电离层TEC对地磁暴的响应分析[J]. 大地测量与地球动力学, 2022, 42(7): 661-668,674

    ZHU Juntao, LIU Yusheng, LIN Zhiyu, et al. Response analysis of global ionospheric TEC to geomagnetic storms from August 25~29, 2018[J]. Journal of Geodesy and Geodynamics, 2022, 42(7): 661-668,674
    [22]
    蔡昌盛, 高井祥, 李征航. 利用GPS监测电离层总电子含量的季节性变化[J]. 武汉大学学报·信息科学版, 2006, 31(5): 451-453,465

    CAI Changsheng, GAO Jingxiang, LI Zhenghang. Monitoring seasonal variations of ionospheric TEC using GPS measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 451-453,465
    [23]
    陈亚楠, 徐继生. 顶部电离层离子密度经度结构的特征及其随季节、太阳活动和倾角的变化[J]. 地球物理学报, 2015, 58(6): 1843-1852 doi: 10.6038/cjg20150601

    CHEN Yanan, XU Jisheng. Longitudinal structure of plasma density and its variations with season, solar activity and dip in the topside ionosphere[J]. Chinese Journal of Geophysics, 2015, 58(6): 1843-1852 doi: 10.6038/cjg20150601
    [24]
    REN Z P, WAN W X, LIU L B, et al. Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere[J]. Geophysical Research Letters, 2008, 35(5): L05108
    [25]
    尹汇民, 孔建, 安家春, 等. 2017年9月强磁暴及引发的电离层扰动[J]. 地球物理学进展, 2021, 36(1): 96-104 doi: 10.6038/pg2021DD0484

    YIN Huimin, KONG Jian, AN Jiachun, et al. Strong geomagnetic storm and induced ionospheric disturbance in September 2017[J]. Progress in Geophysics, 2021, 36(1): 96-104 doi: 10.6038/pg2021DD0484
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article Views(581) PDF Downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return